310 resultados para underdense plasma
Resumo:
A method was developed for the determination of total mercury in biological samples. The effects of aqueous ammonia, ethylenediamine and triethanolamine on Hg signal intensity by inductively coupled plasma mass spectrometry has been evaluated and the possible mechanisms discussed. It has been proved that the signal intensity of Hg significantly increases with adding, in the presence of small amounts of aqueous ammonia, ethylenediamine or triethanolamine. The normalized intensity (the signal intensity ratio with amine and without amine) of Hg increases as the concentration of aqueous ammonia, ethylenediamine or triethanolamine increases, but the degree of enhancement of aqueous ammonia was smaller than that of ethylenediamine and triethanolamine. The normalized intensity of Hg with aqueous ammonia, ethylenediamine and triethanolamine decreases as the nebulizer flow rate increases, but decreasing degree of aqueous ammonia was smaller than that of ethylenediamine and triethanolamine. The higher the RF powers the higher the normalized intensity of Hg at the same nebulizer flow rate. The addition of aqueous ammonia, ethylenediamine and triethanolamine into analytical solutions significantly improved the transport efficiency of Hg. The detection limit of Hg is improved about ten times by the addition of ethylenediamine or triethanolamine under the optimum experimental parameters. The method has been used to determine mercury in biological standard reference materials (SRM). The analytical results are very close to the certified values and the determined values for similar samples.
Resumo:
Target transformation factor analysis was used to correct spectral interference in inductively coupled plasma atomic emission spectrometry (ICP-BES) for the determination of rare earth impurities in high purity thulium oxide. Data matrix was constructed with pure and mixture vectors and background vector. A method based on an error evaluation function was proposed to optimize the peak position, so the influence of the peak position shift in spectral scans on the determination was eliminated or reduced. Satisfactory results were obtained using factor analysis and the proposed peak position optimization method.
Resumo:
A method for the determiantion of rare earth elements in biological sampels by inductively coupled plasma mass spectrometry was developed. Oxide ion yield of the rare earth elements (RFE) decreased with the increasing of RF power and the sampling depth, or with the decreasing of carrier gas flow rate. The spectral interference arising from (PrO)-Pr-141-O-16 on Gd-157 must be corrected. if the concentration of Ba was high enough, it was necessary to correct the spectral interference arising from (BO)-B-135-O-16 on Eu-151, and it was not necessary to correct spectral interference arising from (NdO)-Nd-143-O-16 on Tb-159 etc. in the biological samples under the selected operation parameters. In the biological sample, the major matrix elements, such as K, Na and Ca, result in the suppression of REEs signals and the suppression degree of the Ca is grezter than that of the K and Na. The mussel sample was digested by thd dry ashing, wet digestion with HNO3 + H2O2 and HNO3 + HClO4, respectively. The analytical results of REEs were consistent with each other. Detection limits for REEs are 0.001 similar to 0.013 mu g/L. Recoveries of standard addition are 91.7% similar to 125%. REEs in biological samples were determined directly without separation and preconcentration procedure.
Resumo:
A method for the analysis of mussel standard reference material by inductively coupled plasma atomic emission spectrometry( ICP-AES) and inductively coupled plasma mass spectrometry(ICP-MS) was developed. K, Na, Ca, Mg, P, Al, Fe, Zn, Mn and Sr were determined by ICP-AES and As, B, Cd, Co, Cr, Cu, Ga, Ge, Mn, Mo, Ni, Pb, Se, Sr, U and V by ICP-MS, The interference coefficients at the Mn-55, Se-78, Cu-63, Co-59, Ni-58, Ni-60, As-75, Se-77, V-51, Cr-53 and Cr-52 originating from polyatomic ion of the matrix elements (KO)-K-39-O-16, K-39(2), (ArNa)-Ar-40-Na-23, (CaO)-Ca-43-O-16, (CaO)-Ca-42-O-16, (CaO)-Ca-44-O-16, (PO2)-P-31-O-16, (ArCl)-Ar-40-Cl-35, (ArCl)-Ar-40-Cl-37, (ClO)-Cl-35-O-16, (ClO)-Cl-37-O-16 and (ArC)-Ar-40-C-12 were determined under the selected operation parameters. The major matrix elements, such as K, Na and Ca, result in the suppression of analytes signals. The apparent concentration at the significant biological element which was produced by the different digestion methods, (.) HNO3 + H2O2 (3 + 2), HNO3 + HClO4 (3 + 0.5) and HNO3 + H2SO4 (3 + 0.5),was determined. The sample digested by HNO3 + H2O2 did not give rise to interfere on the analyte, and the backgrounds of Se-77, Ga-69, Zn-67, As-75, V-51, Cr-53 and Cr-52 were increased by HNO3 + HClO4 digestion method, that affected the determination of these elements, especially the monoisotope As and V. Sample digested by HNO3 + H2SO4 increased the backgrounds at Cu-65, Zn-64 and Zn-67. Detection limits of ICP-AES are 0.001 similar to 0.75 mg/L and those of ICP-MS are 0.005 similar to 1.01 mu g/L. The relative standard derivations of ICP-AES and ICP-MS are 2.7% similar to 12.8%, 3.4% similar to 24.8%, respectively.
Resumo:
The content and distribution of rare earth(RE) in normal human plasma have been investigated by ultrafiltration, FPLC and ICP-MS methods, The results showed that there are trace RE in normal human plasma, and their contents are in accordance with their abundance, The RE can bond with immunoglobulin G(IgG), transferrin(Tf) and albumin(Alb) species, but mostly bond with Tf.
Resumo:
A donut-shaped spray chamber has been developed for the introduction of aerosol and/or volatile chemical species into the inductively coupled plasma. Compared with the Fassel-Scott spray chamber, it gives a higher efficiency of aerosol generation and transportation and superior stable inner pressure. As a result, it brings the benefits of higher intensity signal, lower background, higher measurement precision, and better detection limits. Using:his spray chamber, it is more convenient to introduce volatile chemical species into the sampling system, and more flexible for the choice of introducing aerosol and volatile chemical species separately or simultaneously into the plasma. It is also suitable for FIA technique. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
The surface of aromatic polyamide reverse osmosis composite membrane was modified by oxygen and argon plasma. The water permeability of oxygen-plasma-modified membrane increases, and the chlorine resistance of argon-plasma-modified membrane increases. The spectra of the attenuated total reflection-Fourier transform infrared and X-ray photoelectron spectroscopy and the contact angle of the water were analyzed to explain the improvement of the two performances of the composite membrane. The carboxyl groups were introduced when modified by oxygen plasma, and cross-linking occurred when modified by argon plasma. (C) 1997 John Wiley & Sons, Inc.
Resumo:
A reversed-phase high-performance liquid chromatographic method with amperometric detection is described for the separation and quantification of uric acid, guanine, hypoxanthine and xanthine. The isocratic separation of a standard mixture of the compounds was achieved in 5 min on a Spherisorb 5 C-18 reversed-phase column, with a mobile phase of NaH2PO4 (300 mmol dm(-3) pH 3.0)-methanol-acetonitrile-tetrahydrofuran (97.8 + 0.5 + 1.5 + 0.2). Uric acid, guanine, hypoxanthine and xanthine were completely separated, with detection limits in the range 2-20 pmol per injection. The effect of pH and the composition of the mobile phase on the separation are described. The hydrodynamic voltammograms of these compounds were recorded at a glassy carbon electrode. The linear range of the calibration graph for each compound was: uric acid; 1-5000 mu mol dm(-3); guanine, 0.5-2000 mu mol dm(-3); hypoxanthine, 0.1-500 mu mol dm(-3) and xanthine, 0.5-5000 mu mol dm(-3). The within- and between-day precision was good. The uric acid and hypoxanthine content in human plasma was measured using the proposed method. Good recoveries of uric acid (97.9-103%), hypoxanthine (98.0-99.2%), guanine (96.0-98.3%) and xanthine (96.0-102%) were obtained from human plasma. The results of electrochemical detection were in good agreement with those of UV detection.
Resumo:
An assay procedure utilizing pulsed amperometric detection at a platinum-particles modified electrode has been developed for the determination of cysteine and glutathione in blood samples following preliminary separation by reversed-phase liquid chromatography. A chemically modified electrode (CME) constructed by unique electroreduction from a platinum-salt solution to produce dispersed Pt particles on a glassy carbon surface was demonstrated to catalyze the electo-oxidation of sulfhydryl-containing compounds: DL-cysteine (CYS), reduced glutathione (GSH). When used as the sensing electrode in flow-system pulsed-amperometric detection (PAD), electrode fouling could be avoided using a waveform in which the cathodic reactivation process occurred at a potential of - 1.0 V vs. Ag/AgCl to achieve a cathodic desorption of atomic sulfur. A superior detection limit for these free thiols was obtained at a Pt particle-based GC electrode compared with other methods; this novel dispersed Pt particles CME exhibited high electrocatalytic stability and activity when it was employed as an electrochemical detector in FIA and HPLC for the determination of those organo-sulfur compounds.
Resumo:
In this paper, the graft copolymers of styrene to nascent linear polyethylene reactor powders were prepared through plasma graft polymerization. The grafting reaction was initiated by the alkyl radicals formed on the surface of nascent polyethylene with plasma treatment as indicated by electron spin resonance spectra. In graft copolymerization by alkyl radicals, the grafting yield increased with either the plasma power or the plasma treatment lime. Compared with ordinary polyethylene powders, nascent polyethylene reactor powders were found to be more easily plasma-grafted. This has been attributed to the greater sensitivity to irradiation in producing reactive centres under the same conditions. High density polyethylene showed almost the same grafting yield as linear low density polyethylene at 50 degrees C. The surface morphology of nascent polyethylene observed by scanning electron microscope before and after the grafting showed that the silk-like fibrils were not destroyed by plasma treatment.
Resumo:
The melting behavior of poly(methyl methacrylate)-grafted nascent polyethylene reactor powder by plasma irradiation was studied by differential scanning calorimetry (DSC). The grafting yield ranged hom 11 to 190%. Grafting was found to lower both melting point and heat of fusion during the first run of DSC determination. The heat of fusion was used to calculate the apparent grafting yield of the samples. There was little strain induced by plasma-irradiated grafting on the surface of the polyethylene crystals. A method to determine the covalent grafting yield in the graft copolymer systems was developed. (C) 1995 John Wiley & Sons, Inc.
Resumo:
During the synthesis of fullerenes by dc plasma arcs, it has been found that the anodic graphite rod consistently burns up, while the cathodic graphite rod grows slag at its end. Further investigations revealed that the anodic and cathodic graphite rods p
Resumo:
The oxygen permselectivity of a poly[1-(trimethylsilyl)-1-propyne) (PTMSP) membrane was drastically improved by plasma polymerization of fluorine-containing monomers. The effects of such plasma polymerization conditions as deposition time, plasma power an
Resumo:
Effects of some factors on the performance of our Kalman filter in discrimination of closely spaced overlapping signals were investigated. The resolution power of the filter for overlapping lines can be strengthened by reduction of the step size in scans. The minimum peak separation of two lines which the Kalman filter can effectively handle generally equals two to three times the step size in scans. Significant difference between the profiles of the analysis and interfering lines and multiple lines from matrix in the spectral window of the analysis line are very helpful for the Kalman filter to discern closely spaced analysis and interfering signals correctly, which allow the filter well to resolve the line pair with very small peak distance or even the entirely coincident lines.