346 resultados para conduction band electrons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel dual-wavelength (DW) sampled fiber Bragg grating (SFBG) is proposed and demonstrated for the first time to the author's best knowledge. This kind of SFBG can realize a DW operation with uniform reflection peaks rather than multiple nonuniform peaks shown in conventional SFBGs. Based on the designed SFBG, we have proposed a novel L-band DW erbium-doped fiber laser, which has such a unique merit that the spacing of the two wavelengths keeps unchanged during tuning laser.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic properties of wurtzite/zinc-blende (WZ/ZB) heterojunction GaN are investigated using first-principles methods. A small component of ZB stacking formed along the growth direction in the WZ GaN nanowires does not show a significant effect on the electronic property, whereas a charge separation of electrons and holes occurs along the directions perpendicular to the growth direction in the ZB stacking. The later case provides an efficient way to separate the charge through controlling crystal structure. These results have significant implications for most state of the art excitonic solar cells and the tuning region in tunable laser diodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the effect of image forces, arising due to a difference in dielectric permeabilities of the well layer and barrier layers, on the energy spectrum of an electron confined in a rectangular potential well under a magnetic field. Depending on the value and the sign of the dielectric mismatch, image forces can localize electrons near the interfaces of the well or in well centre and change the direct intersubband gaps into indirect ones. These effects can be controlled by variation of the magnetic field, offering possibilities for exact tuning of electronic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The empirical pseudopotential method within the virtual crystal approximation is used to calculate the band structure of Mg1-xZnySySe1-y, which has recently been proved to be a potential semiconductor material for optoelectronic device applications in the blue spectral region. It is shown that MgZnSSe can be a direct or an indirect semiconductor depending on the alloy composition. Electron and hole effective masses are calculated for different compositions. Polynomial approximations are obtained for both the energy gap and the effective mass as functions of alloy composition at the GAMMA valley. This information will be useful for the future design of blue wavelength optoelectronic devices as well as for assessment of their properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using the envelope function method we calculated the tunneling escape time of electrons from a quantum well. We adopted a simplified interface matrix to describe the GAMMA-X mixing effect, and employed a wave packet method to determine the tunneling escape time. When the GAMMA state in the well was in resonance with the X state in the barrier, the escape time reduced remarkably. However, it was possible that the wave functions in two different channels, i.e., GAMMA-GAMMA-GAMMA and GAMMA-X-GAMMA, could interfere destructively, leading the escape time greater than that of pure GAMMA-GAMMA-GAMMA tunneling.