434 resultados para bidimensional electrophoresis


Relevância:

10.00% 10.00%

Publicador:

Resumo:

组特殊自养氨氧化混合种群,表现:无机环境种群生长迅速、生物量高;在一个完全无机的自养生长环境中,不仅保持高氨氧化速率,并出现丰富的异养微生物种群;该种群置于异养、厌氧环境中,迅速表现出产氢特征。对于这样一个特殊的生态体系,研究其共生机理,以及联接这些种群之间的碳源和能源问题,将具有非常重要意义。我们拟从种群特征、细胞表面分泌产物、游离体系产物多糖、蛋白和脂肪酸方面开展研究。 第一部分,自养氨氧化混合种群的基本特征。采用氨氧化培养基,进行种群氨氧化特征研究;采用扫描电镜观察自养混合种群的微观特征;沉降、离心去除微生物种群,分析水相中的总有机碳、糖类等物质;利用LB培养基进行种群的分离、纯化,并采用DGGE手段对微生物种群结构进行分析。结果表明,接入菌种后(2/5000(V/V)),培养液中氨(200mg/L)在3-5天内快速降解;亚硝酸盐与氨氮变化呈负相关趋势,仅有少量硝酸盐含量(< 30mg/L)。氨氧化种群的生物量增长与氨氧化趋势一致,初始生物量7.75 mg/L(蛋白含量),3-5天后生物量快速增长,并达到最高63.06 mg/L(蛋白含量)。电镜图片显示,种群外包裹一层粘液。离心除去菌体后,检测培养液总有机碳和糖的含量,同样表现出与生物量增长相似的特征,分别由初始的3.73、2.35 mg/L,3-5内天迅速增加,并分别达到最大值35.19、27.45 mg/L。经初步分离、纯化并对纯化菌株进行测序,获得了10株异养微生物分别为布鲁氏菌科苍白杆菌属、纤维单孢菌、类芽孢菌属、黄杆菌属、无色杆菌、鞘脂单胞菌、嗜麦芽寡养单胞菌、噬氢菌属、硫红球菌、假单胞菌;DGGE显示,约有20分条离带,我们对其中的两条优势条带进行切割回收测序,鉴定为欧洲亚硝化单胞菌(Nitrosomonas eur)。 第二部分:混合种群自养-异养菌共生的可能机制。在对微生物种群特征初步分析基础上,针对胞外糖类组分可能被微生物代谢分解,我们重点对微生物细胞蛋白质与糖类进行分析。采用超声结合RIPA裂解液裂解,SDS-PAGE电泳分析混合种群总蛋白种类,并通过氨基酸分析仪及红外光谱法分析氨基酸组成及蛋白红外特征。采用超声破碎结合反复冻融对细胞样品进行处理,提取液采用醇沉、Sevage脱氮白,凝胶过滤方法脱盐和分级分离。对提取物的糖分析包括:紫外扫描,红外光谱,核磁共振,单糖组成分析;扫描电镜观察菌群破裂现象。SDS-PAGE分析结果表明:氨氧化种群不同生长阶段都显示出42kD蛋白表达量很高,d4时42kD蛋白表达已经很强,4-7d内一直持续这种过量表达,直到d8后表达开始减弱。说明42kD蛋白可能与氨氧化密切相关。红外光谱分析显示:细胞提取物的特征峰分布在3427.42cm-1、1718.18 cm-1和1681.72 cm-1、1160.07和1086.74 cm-1,分别对应为OH、 C=O、C-O-C基团,表明具有蛋白的典型特征;氨基酸分析显示蛋白中的Gly,Asp,Ala,Glu含量相对较高。 提取物中胞外多糖分离谱图得到不均一组分,共得到6个收集峰;紫外扫描在201-213 nm处有多糖吸收峰,同样表明多糖成分不均一性;多糖红外光谱特征峰主要分别在3400.49 cm-1、2920.28 cm-1、1154.54和1087.52 cm-1,对应OH、-CH2- or CH 、C-O-H or C-O-C等多糖特征基团;多糖提取物核磁共振1H d4.3~5.9之间出现强吸收峰,这是1H中,多糖存在的明显证据,1H NMR中,其中O-乙酰基的甲基上的氢信号为d1.1~1.3之间。糖肟全苯甲酸酯衍生物的HPLC测定中,得到单一的单糖峰,由于时间问题,还未进行更深入的试验;电镜图片显示,种群中的细胞有大量的破裂现象。 实验表明,自养氨氧化混合种群显示出快速的氨氧化速率,氨氧化过程生物量和有机质的增加明显。微生物种群包裹粘液层,并分离纯化出大量的异养菌;去除菌体后的游离培养液中存在有机质(包括多糖)说明无机自养生长体系中存在异养菌生长、繁殖的二次碳源;细胞提取物中蛋白条带数目多、种类丰富;细胞多糖提取物具有明显的多糖特征,以及单糖的存在。结合种群的显微特征和游离体系中的有机质的检测结果,我们认为,无机自养生长体系中,种群细胞生长过程中发生的破裂现象可能是导致大量的蛋白、多糖释放到游离胞外,并成为其他异养菌生长的碳源和氮源。这可能是自养体系中,大量异养菌共生的可能机制,至于是什么原因引起种群生长过程中产生的破裂现象,还有待下一步深入研究。 A group of mixed autotrophic ammonia oxidizing populations, having much biological characteristic tested by concerned personnel for pilot test: Performed rapid population growth and obtained high biomass in inorganic environment; Not only maintained a high rate of ammoxidation, promoted a wealth of heterotrophic microbial populations growth in a totally inorganic and autotrophic growth environment; Placed in heterotrophic and anaerobic environment,had the performance characteristics that could rapidly produce hydrogen.For such a special ecological system, Study its symbiotic mechanism and the connection between these populations of carbon and energy issues, will have a very important significance. We intended from the characteristics of the population, the secretion product of cell surface, free substance in the liquid medium like polysaccharide, protein and fatty acids carrying out research. Part I: The basic features of mixed autotrophic ammonia oxidizing populations . Use inorganic liquid medium, processed study for ammonia oxidation characteristics of the population; we used scanning electron microscopy to get micro-features of autotrophic ammonia oxidizing populations .The medium was carried out settlement and centrifugal then removed the microbial populations, after all of that we analysis the water phase for total organic carbon(TOC), carbohydrate and other substances; Solid ammonia oxidizing medium was adopted to separation and purification of population, DGGE means was for structure analysis of microbial population. The results showed that after the inoculum of bacteria (2 / 5000 (V / V)), ammonia in the culture medium (200 mg / L) was rapid degradation in 3-5 days; ammonia and nitrite have the negative correlation between changes in the trend, then only a small amount of nitrate content (<30mg / L). The biomass growth of ammoxidation population in line with the trend of ammonia oxidation, the initial volume of it was 7.75 mg / L (protein content), in 3-5 days upto 63.06 mg / L (protein content). Electron microscope image showed, the populations were wrapped in a layer of mucus, including the a large number ruptted micorbe , Centrifuge to remove bacteria, then detected the medium for total organic carbon and sugar content, result took on the same characteristics with biomass growth, that were from the initial 3.73、2.35 mg / L respectively, in 3-6 days achieved rapid increase in the maximum to 35.19、27.45 mg / L respectively. After initial separation、 purification ,then processed sequencing to strains purified and got the result that there were 10 heterotrophic microorganisms : Brucella Branch pale bacillus, Cellu lomonas, Bacillus species category, a Flavobacterium, colorless Bacteria, Aeromonas sheath fat, little support maltophilia Aeromonas, macrophages species hydrogen, sulphur-MI, Pseudomonas bacteria spores; DGGE display, there were 20 separation bands approximately. Part II: Mixed populations that autotrophic - heterotrophic bacteria symbiotic mechanism. On the basis of preliminary analysis of microbial population characteristics, aiming at extracellular carbohydrate components might be decomposition by microbial, we focused on microbial cell protein and carbohydrate analysis. Using ultrasound combined with RIPA lysis cracking the cells, SDS-PAGE electrophoresis analysis the total protein species of the population, and through the amino acid analyzer studied the compositions of amino acid and infrared spectroscopy analysis of a protein infrared characteristics. Using ultrasound combined with repeatedly freezing and thawing to treated the cell sample, then took the means that alcohol precipitation, deproteinization by Sevage, gel filtration aimed at desalination and grade separation to deal with the lysates . The extraction of sugar analysis included: UV scanning, IR, NMR, single-sugar composition analysis. SDS-PAGE analysis showed that: 42 kD protein expression was very high at different growth stages of mixed autotrophic ammonia oxidizing populations , on the fourth day, 42 kD protein expression had been very strong, 4-7d, it had continued this excessive expression, then started to weaken after 7 days. 42 kD protein that might be closely associated with ammonia oxidation. Infrared spectral analysis showed that: cell extracts with the characteristic that the peak distribution in 3427.42 cm-1、1718.18 cm-1 and 1681.72 cm-1、1160.07 cm-1 and 1086.74 cm-1 corresponding to OH、C = O、C-O-C Groups which had the typical characteristics of protein; and analysis showed that amino acids including Gly, Asp, Ala, Glu ,the content in the protein is relatively high. Exopolysaccharide in the extracts had the separation map that it was uneven, received a total of six collection peaks by the detection mode of phenol-sulphruic acid method ; ultraviolet scan in the 201-213 nm department had polysaccharide absorbing peak, the same ingredients that polysaccharide heterogeneity; infrared polysaccharide spectral characteristics of the main peak at 3400.49 cm-1, 2920.28 cm-1, 1154.54 and 1087.52 cm-1, corresponding OH,-CH2-or CH, C-O-H or C-O-C;and other characteristics of polysaccharide group; 1H NMR of polysaccharide extract appeared absorption peak between d4.3 ~5.9, which is the apparent evidence of polysaccharide, In 1H NMR, the hydrogen signal of one of O-acetyl was between 1.1 to 1.3. The determination of Sugar oxime whole benzoate derivatives by HPLC, there was a single-sugar peak, as a matter of time, yet more in-depth test. Summary: Mixed autotrophic ammonia oxidizing populations show us that it had the ability in ammonia oxidizing and it was great, organic matter and biomass increased significantly in the process of ammonia oxidation. Microbial populations was wrapped up slime layer, the phenomenon of cell breakdown obviously, and there were a lot of separation and purification of the heterotrophic bacteria; a lot of organic matter (including polysaccharides)remined in the medium that removal of cell indicated the inorganic system existed secondary carbon sources that could be used by the heterotrophic bacteria ; there were a large number proteins bands of cell extract, rich variety; cell extracts of polysaccharide had obvious characteristics of polysaccharide, and the existence evidence of single-sugar. Combined population of microscopic characteristics and free of organic matter in the test results, we believe that the health of inorganic system, population growth occurred in the course of the breakdown of the phenomenon is likely to lead to a lot of protein and polysaccharide released into the extracellular free, And other heterotrophic bacteria use them to the growth as carbon and nitrogen. This may be autotrophic system, the large number of heterotrophic bacteria symbiotic mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

自养硝化过程在自然界氮素循环和污水处理系统脱氮过程中起着关键作用。因此,了解有机碳对硝化的影响和硝化菌与异养菌之间的竞争对微生物生态学和污水处理系统设计都很重要。目前对氨氧化到硝酸盐氮过程的研究文献很多,但对亚硝酸盐氧化过程在异养菌的存在下如何受到有机碳影响的研究甚少。本文从生理生化指标、基因组学、蛋白组学三方面考察了在实验室条件下有机碳(乙酸钠)对硝化细菌和异养菌组成的混合菌群的硝化性能、菌群结构及代谢功能的变化的影响。 全文分为两大部分: 第一部分为乙酸钠对游离态硝化混合菌群的硝化性能和菌群结构的短期影响。混合菌株先在自养条件下进行连续培养,两个月后硝化速率达到20 mg N/(L·d);而后离心收集菌体进行批式实验。在批式反应器中,初始亚硝氮均为126mg N/ L,乙酸钠-C 与亚硝酸盐-N 的比分别为0,0.44,0.88,4.41,8.82。结果表明:在低C/N 比(0.44 和0.88)时,亚硝酸盐去除速率比C/N=0 下高,细菌呈现一次生长;而在高C/N 比(4.41 和8.82)时,出现连续的硝化反硝化,亚硝酸盐去除率仍比对照下高,细菌呈现二次生长。不同C/N 比下微生物群落明显不同,优势菌群从自养和寡营养细菌体系(包括亚硝酸盐氧化菌,拟杆菌门,α-变形菌纲,浮霉菌门和绿色非硫细菌下的一些菌株)过渡到异养和反硝化菌体系 (γ-变形菌纲的菌株尤其是反硝化菌Pseudomonas stutzeri 和P. nitroreducens 占主导)。 第二部分为乙酸钠对硝化混合菌群生物膜的硝化性能和菌群结构的长期影响。接种富集的硝化混合菌群于装有组合式填料的三角瓶中,于摇床中自养培养;两个月后填料上形成生物膜的硝化速率达到20 mg N/ (L·d);而后进行长期实验,每12 小时更换混合营养培养基(亚硝氮约200 mg N/ L,C/N 比同上)。结果显示:相较于C/N 比=0 时的亚硝酸盐氧化反应来说,低C/N 比出现了部分的反硝化,而高C/N 比则是几乎完全的反硝化。与对照比,C/N=0.44 时亚硝酸盐氧化速率并未受乙酸钠的影响,反而上升了,但C/N=0.88 时亚硝酸盐氧化速率有所下降。菌群结构分析表明自养对照与混合营养下微生物群落的不同;PCR-DGGE未检测出混合营养下硝化杆菌的存在,而显示异养菌尤其是反硝化菌的大量存 在。荧光定量PCR 结果表明随C/N 比上升,硝化杆菌数量从2.42 × 104 下降到1.34× 103 16S rRNA gene copies/ ng DNA,反硝化菌由0 增加至2.51 × 104 nosZgene copies/ ng DNA。SDS-PAGE 的结果表明不同C/N 比下的蛋白组较为复杂且呈现一定的差异性。 有机碳对亚硝氮氧化及微生物群落的影响很复杂,本文分别讨论了对游离态和生物膜固定态两种状态的混合菌群相应的短期和长期影响研究。研究发现,有机碳并非一定带来硝化的负影响,如果控制在适当的C/N 比范围,有机碳是有利于亚硝氮氧化的。这些发现阐明了有机碳和硝化反硝化的关系,填补了硝化微生物生态学上的空白,对污水处理系统中减少异养菌的影响并提高氮去除率有一定理论指导意义。 Nitrification plays a key role in the biological removal of nitrogen in both nature and wastewater treatment plant (WWTP). So, understanding of the effect of organic carbon on nitrification and the competition between nitrifying bacteria and heterotrophic bacteria is important for both microbial ecology and WWTP design and operation. Despite the fact that the nitrification process of ammonia to nitrate has been extensively investigated, it is not known how the process of nitrite oxidization is affected by organic carbon when heterotrophic bacteria are present. By measuring different physiological and biochemical parameters, as well as using genomic DNA and proteome analysis, we investigated the influence of organic (acetate) on nitrite oxidizing performance, community structure and metabolic function of nitrite-oxidizing and heterotrophic bacteria under laboratory conditions. The dissertation involves two parts: Part one deals with the effect of organic matter on functional performance and bacterial community shift of nitrite-oxidizing and heterotrophic bacteria under suspended state. The bacteria were prepared in a continuous-flow stirred reactor under autotrophic condition; after two months, the nitrification rate of the culture reached about 20 mg N/ (L·d); then the bacteria were harvested for the next batch experiments. The initial concentrations of nitrite were 126 ± 6 mg N/ L in all flasks, and sodium acetate (C) to nitrite (N) ratios were 0, 0.44, 0.88, 4.41, and 8.82, respectively. The results showed that at low C/N ratios (0.44 or 0.88), the nitrite removal rate was higher than that obtained under autotrophic condition and the bacteria had single growth phase, while at high C/N ratios (4.41 or 8.82), continuous aerobic nitrification and denitrification occurred besides higher nitrite removal rates, and the bacteria had double growth phases. The community structure of total bacteria strikingly varied with the different C/N ratios; the dominant populations shifted from autotrophic and oligotrophic bacteria (NOB, and some strains of Bacteroidetes, Alphaproteobacteria, Actinobacteria, and green nonsulfur bacteria) to heterotrophic and denitrifying bacteria (strains of Gammaproteobacteria, especially Pseudomonas stutzeri and P. nitroreducens). Part two describes the influence of acetate on nitrite oxidizing performance, community structure and metabolic function of nitrite-oxidizing and heterotrophic bacteria in biofilms. Bacterial enrichments was transferred into flasks with polypropylene carriers and cultured under agitated and autotrophic condition. After two month, the biofilms grown on the carriers had a nitrification rate of about 20 mg N/ (L·h); then the biofilms were refreshed with mixotrophic medium (nitrite were 200 mg N/ L in all flasks, and C/N ratios was the same as above) every 12 h. the results show: normal nitrite oxidization reactions were performed when C/N = 0, but nitrite oxidization and partial denitrification occurred with low C/N ratios (0.44 or 0.88). At high C/N ratios (4.41 or 8.82), we mainly observed denitrification. In contrast to C/N = 0, the nitrite oxidization rate was unaffected when C/N = 0.44, but decreased with C/N = 0.88. The structure of bacterial communities varied significantly between autotrophic and mixotrophic conditions. Nitrobacter was hard to detect by PCR-DGGE while heterotrophs and especially denitrifiers were in the majority under mixotrophic conditions. Real-time PCR indicated that the Nitrobacter population decreased from 2.42 × 104 to 1.34 × 103 16S rRNA gene copies/ ng DNA, while the quantity of denitrifiers obviously increased from 0 to 2.51×104 nosZ gene copies/ ng DNA with an increasing C/N ratio. SDS-PAGE indicated the complexity of and a certain difference between the proteome of nitrite-oxidizing and heterotrophic bacteria at different C/N ratios. We conclude that the influence of organic matter on nitrite oxidation and the community structure of NOB and heterotrophic bacteria is complex. In this dissertation, we focused on how sodium acetate influenced the system both under suspended state and in biofilms. We observed that acetate did not necessarily have a negative impact on nitrification. Instead, an appropriate amount of acetate benefited both nitrite oxidization and denitrification. These findings provide a greater understanding about the relationship between organics and nitrification; they fill the gaps in the field of microbial ecology of nitrifying bacteria; they also provide insight into how to minimize the negative impact of heterotrophic bacteria and maximize the benefit of nitrogen removal in biological treatment systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

以SMMC-7721肝癌细胞为材料,采用单细胞凝胶电泳(Single cell gel electrophoresis,SCGE)实验方法,利用兰州近代物理研究所重离子研究装置(HIRFL)产生的氖离子(80MeV/u20Ne10+),研究重离子对肿瘤细胞DNA的损伤程度随时间的变化情况。结果表明,重离子辐照所致原初损伤与剂量呈线性正相关;继续培养24h内有明显的DNA两次损伤现象。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simple method was developed for injecting a sample on a cross-form microfluidic chip by means of hydrostatic pressure combined with electrokinetic forces. The hydrostatic pressure was generated simply by adjusting the liquid level in different reservoirs without any additional driven equipment such as a pump. Two dispensing strategies using a floating injection and a gated injection, coupled with hydrostatic pressure loading, were tested. The fluorescence observation verified the feasibility of hydrostatic pressure loading in the separation of a mixture of fluorescein sodium salt and fluorescein isothiocyanate. This method was proved to be effective in leading cells to a separation channel for single cell analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have developed a new experimental system based on a microfluidic chip to determine severe acute respiratory syndrome coronavirus (SARS-Cov). The system includes a laser-induced fluorescence microfluidic chip analyzer, a glass microchip for both polymerase chain reaction (PCR) and capillary electrophoresis, a chip thermal cycler based on dual Peltier thermoelectric elements, a reverse transcription-polymerase chain reaction (RT-PCR) SARS diagnostic kit, and a DNA electrophoretic sizing kit. The system allows efficient cDNA amplification of SARS-CoV followed by electrophoretic sizing and detection on the same chip. To enhance the reliability of RT-PCR on SARS-CoV detection, duplex PCR was developed on the microchip. The assay was carried out on a home-made microfluidic chip system. The positive and the negative control were cDNA fragments of SARS-CoV and parainfluenza virus, respectively. The test results showed that 17 positive samples were obtained among 18 samples of nasopharyngeal swabs from clinically diagnosed SARS patients. However, 12 positive results from the same 18 samples were obtained by the conventional RT-PCR with agarose gel electrophoresis detection. The SARS virus species can be analyzed with high positive rate and rapidity on the microfluidic chip system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

8-hydroxy-2'-deoxyguanosine (8OHdG) has been widely used as a biomarker of oxidative DNA damage in both animal models and human studies. To evaluate the effect of cigarette smoking on oxidative stress, we studied the levels of urinary 8OHdG from smokers and non-smokers and investigated the association with cigarette smoking. The urinary 8OHdG concentrations were determinated by capillary electrophoresis with end-column amprometric detection (CE-AD) after a single-step solid phase extraction (SPE), and then quantitatively expressed as a function of creatinine excretion. To increase the concentration sensitivity, a dynamic pH junction was used and the focusing effect was obvious when using 30 mM phosphate (pH 6.50) as sample matrix. The limit of detection is 4.3 nM (signal-to-noise ratio S/N = 3). The relative standard deviation (R.S.D.) was 1.1% for peak current, and 2.3% for migration time. Based on the selected CE-AD method, it was found that the mean value of urinary 8OHdG levels in the smokers significantly higher than that in non-smokers (31.4 +/- 18.9 nM versus 14.4 +/- 7.6 nM, P = 0.0004; 23.5 +/- 21.3 mug g(-1) creatinine versus 12.6 +/- 13.2 mug g(-1) creatinine, P = 0.028). (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increased oxidative stress induced by hyperglycemia may contribute to the pathogenesis of diabetic complications. Urinary 8-hydroxydeoxyguanosine (8-OHdG) has been reported to serve as a sensitive biomarker of oxidative DNA damage and also of oxidative stress. This article studied oxidative DNA damage in patients with diabetic nephropathy and in healthy control subjects by urinary 8-OHdG evaluations. Contents of 8-OHdG in urine were analyzed by capillary electrophoresis with end-column amperometric detection (CE-AD) after a single-step solid-phase extraction (SPE). Levels of urinary 8-OHdG in diabetic nephropathy patients with macroalbuminuria was significant higher than in control subjects (5.72 +/- 6.89 mumol/mol creatinine versus 2.33 +/- 2.83 mumol/mol creatinine, P = 0.018). A significant difference of 24 h urinary 8-OHdG excretions exists between the patients with macroalbuminuria and the patients with nonnoalbuminuria (19.2 +/- 16.8 mug/24 h versus 8.1 +/- 1.7 mug/24 h, P = 0.015). There was a positive correlation between urinary excretion of 8-OHdG and glycosylated hemoglobin (HbA(1)c) (r = 0.287, P = 0.022). A weak correlation exists between the levels of 8-OHdG and triglyceride (r = 0.230, P = 0.074). However, the urinary 8-OHdG contents are not correlated with blood pressure and total cholesterol. The increased excretion of urinary 8-OHdG is seen as indicating an increased systemic level of oxidative DNA damage in diabetic nephropathy patients. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glycidyl methacrylate (GMA) and ethylene dimethacrylate (EDMA) were used to synthesize a monolithic capillary column containing reactive epoxy groups. Glutaraldehyde was introduced and linked to the monolith after a process of amination. An aqueous solution of commercial carrier ampholytes (CAs, Ampholine) was focused in such a polymer column. The primary amino groups of CAs reacted with glutaraldehyde along the capillary. CAs were immobilized at different positions in the column according to their isoelectric points (pl), resulting in a monolithic immobilized pH gradient (M-IPG). Isoelectric focusing (IEF) was performed without CAs in such an M-IPG column. Due to the covalent attachment of the CAs this M-IPG can be repeatedly used after its preparation. Good stability, linearity, and reproducibility were obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A method involving self-concentration, on-column enrichment and field-amplified sample stacking for on-line concentration in capillary electrochromatography with a polymer monolithic column is presented. Since monolithic columns eliminate the frit fabrication and the problems associated with frits, the experimental conditions could be more flexibly adjusted to obtain higher concentration factor in comparison with conventional particulate packed columns. With self-concentration effect, the detection sensitivity of benzene and hexylbenzene is improved by a factor of 4 and 8, respectively. With on-column enrichment and ultralong injection, improvement as high as 22 000 times in detection sensitivity of benzoin is achieved. Furthermore, a combination of the three above-mentioned methods yields up to a 24000-fold improvement in detection sensitivity for caffeine, a charged compound. Parameters affecting the efficiency of on-line concentration are investigated systematically. In addition, equations describing on-line concentration process are deduced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Desorption/ionization on silicon mass spectrometry (DIOS-MS) is a matrix-free technique that allows for the direct desorption/ionization of low-molecular-weight compounds with little or no fragmentation of analytes. This technique has a relatively high tolerance for contaminants commonly found in biological samples. DIOS-MS has been applied to determine the activity of immobilized enzymes on the porous silicon surface. Enzyme activities were also monitored with the addition of a competitive inhibitor in the substrate solution. It is demonstrated that this method can be applied to the screening of enzyme inhibitors. Furthermore, a method for peptide mapping analysis by in situ digestion of proteins on the porous silicon surface modified by trypsin, combined with matrix-assisted laser desorption/ionization-time of flight-MS has been developed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This review article summarizes the variety of polar stationary phases that have been employed for capillary electrochromatographic separations. Compared with reversed-phase stationary phases, the polar alternatives provide a completely different retention selectivity towards polar and charged analytes. Different types of polar stationary phases are reviewed, including the possible retention mechanisms. Electrochromato-graphic separations of polar solutes, peptides, and basic pharmaceuticals on polar stationary phases are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A polymer-based monolithic capillary column imprinted with 4-aminopyridine (4-AP) was prepared by a thermally-initiated polymerization process; and its performance as a capillary electrochromatographic medium was evaluated in separating 4-AP and 2-AP isomers. The effects of experimental parameters, such as pH value and ionic strength of the buffer, the acetonitrile content in the mobile phase, and the applied voltage, on the resolution of these isomers had been carefully investigated. It was found that in the retention process there were interplays of multiple mechanisms of ion-exchange, molecular imprinting, and electrophoresis. These mechanisms allowed more sophisticated control of experimental parameters in the separation of ionizable compounds.