312 resultados para Red-clay
Resumo:
Dipolar fluorescent compounds containing electron-accepting pyrazine-2,3-dicarbonitrile and electron-donating arylamine moiety have been designed and synthesized. The optical and electrochemical properties of these compounds can be adjusted by changing pi-bridge length and the donor (D) strength. Organic light-emitting devices based on these compounds are fabricated. Saturated red emission of (0.67, 0.33) and the external quantum efficiency as high as 1.41% have been demonstrated for one of these compounds.
Resumo:
Nylon 11 (PA11)/clay nanocomposites have been prepared by melt-blending, followed by melt-extrusion through a capillary. Transmission electron n-Licroscopy shows that the exfoliated clay morphology is dominant for low nanofiller content, while the intercalated one is prevailing for high filler loading. Melt rheological properties of PA11 nanocomposites have been studied in both linear and nonlinear viscoelastic response regions. In the linear regime, the nanocomposites exhibit much higher storage modulus (G') and loss modulus (G") values than neat PAIL The values of G' and G" increase steadily with clay loading at low concentrations, while the G' and G" for the sample with 5 wt % clay show an inverse dependence and lie between the modulus values of the samples with 1 and 2 wt % of clay. This is attributed to the alignment/orientation of nanoclay platelets in the intercalated nanocomposite induced by capillary extrusion. In the nonlinear regime, the nanocomposites show increased shear viscosities when compared with the neat resin. The dependence of the shear viscosity on clay loading has analogous trend to that of G' and G".
Resumo:
In the present review, the authors do not try to provide a comprehensive review of researches on polymer/clay nanocomposites (PCNs), but some examples to demonstrate different exfoliation processes of the clay in various polymer matrixes and the dispersed state of clay. Interaction between polymers and layered silicates plays an important role in adjusting the exfoliation process of layered silicates and the microstructure of polymer nanocomposites. Properties of polymer/layered silicate nanocomposites mainly depend on the dispersed state of layered silicates. The authors will also address the outline of the present research in the direction of PCNs including the discussion of technical problems and their possible solutions.
Resumo:
Neutral red (NR) is used as a probe to study the temperature and concentration dependent interaction of a cationic dye with nucleic acid. A temperature-dependent interaction of NR with calf thymus DNA (CT DNA) has been studied by differential pulse voltammetry (DPV), UV-Visible absorption, circular dichroism (CD) and fluorescence spectroscopy. The experimental results of increasing peak current, changes in the UV-Visible absorption and fluorescence spectra of NR and decreasing the induced circular dichroism (ICD) intensity show that (i) the binding mode of NR molecules is changed from intercalating into DNA base pairs to aggregating along the DNA double helix and (ii) the orientation of NR chromophore in DNA double helix is also changed with the temperature.
Resumo:
An efficient organic light-emitting device using a trivalent europium (Eu) complex Eu(Tmphen)(TTA)(3) (TTA=thenoyltrifluoroacetone, Tmphen=3,4,7,8-tetramethyl-1,10-phenanthroline) as the dopant emitter was fabricated. The devices were a multilayer structure of indium tin oxide/N,N-diphenyl-N,N-bis(3-methylphenyl)-1,1-biphenyl-4,4-diamine (40 nm)/ Eu complex:4,4-N,N-dicarbazole-biphenyl (1%, 30 nm)/2,9-dimethyl,4,7-diphenyl-1,10phenanthroline (20 nm)/AlQ (30 nm)/LiF (1 nm)/Al (100 nm). A pure red light with a peak of 612 nm and a half bandwidth of 3 nm, which is the characteristic emission of trivalent europium ion, was observed. The devices show the maximum luminance up to 800 cd/m(2), an external quantum efficiency of 4.3%, current efficiency of 4.7 cd/A, and power efficiency of 1.6 lm/W. At the brightness of 100 cd/m(2), the quantum efficiency reaches 2.2% (2.3 cd/A).
Resumo:
A thin film electroluminescence cell with the structure of ITO/PPV/PVK:Eu(TTA)(4)C5H5NC16H33:PBD/Alq(3)/Al has been fabricated. Red emission with a very sharp spectral band at 614nm was observed and a maximum luminance of 20cd . m(-2) at 36V was obtained from the spin-coated device. The full width at half maximum of luminescent spectrum is less than 10nm.
Resumo:
The influence of nanodispersed clay on the alpha crystalline structure of polyamide 6 (PA6) was examined in-situ with X-ray diffraction (XRD) between room temperature and melting. In pure PA6 upon annealing the alpha crystalline phase was substituted by an unstable pseudohexagonal phase at 150degreesC, then it transformed into a new stable crystalline structure - high temperature alpha' phase above the transition temperature. However, in PA6/clay nanocomposite (PA6CN), the alpha phase did not present crystalline phase transition on heating. The increase in the annealing temperature only led to continuous intensity variation. The different behaviors were caused by the confined spaces formed by silicate layers, which constrained the mobility of the polymer chains in-between.
Resumo:
By comparing the phosphorescence spectra of Gd(acac)(3) (acac: acetylacetone) and Gd(TFacac)(3) (TFacac: 1, 1, 1-trifluoro-acetylacetone), the effect of fluorine replacing of hydrogen was discussed. It can lower the triplet state energy of acac and make it more suitable to the D-5(1) energy state of europium. Organic electroluminescent (OEL) devices with corresponding europium complexes as emissive layers were fabricated. A triple laver-type device with a structure of glass substrate/indium-tin oxide (ITO)/poly(N-vinylcarbazole) (PVK)/PVK:Eu(TFacac)(3)phen:2-(4-biphenyl)-5-(4-t-butylphenyl)-1,3,4-oxadiazole (PBD)/PBD/Al exhibits bright red luminescence upon applying dc voltage, The device has the properties of a diode and the current-bias voltage line was obtained.
Resumo:
Eu3+-activated calcium silicate (CaO-SiO2:Eu3+) luminescent films were prepared by the sol-gel method. The structural evolution of the film was studied by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), and the luminescence properties of the phosphor films were investigated as a function of heat treatment temperature. The XRD study indicates that a kilchoanite phase forms in the film sintered at 800 degreesC, which is different from that in gel powder treated under the same conditions. The SEM results show that the film thickness decreases and the particles in the film become smaller with increasing heat treatment temperature. The CaO-SiO2:Eu film shows the characteristic emission of Eu3+ under UV excitation, with the Eu3+ D-5(0)-->F-7(2) band (616 nm) being the most prominent. A large difference in the Eu3+ lifetime is observed between the film samples treated at 500 and 700 degreesC (or above). Concentration quenching occurs when the Eu3+ doping concentration is above 6 mol% of Ca2+ in the film.
Resumo:
An Electroluminescent device with PVK film doped with Eu(TTA)(3) Phen and PBD was fabricated. The device structure of glass substrate/indium-tin-oxide/PPV/PVK : Eu(TTA)3 Phen : PBD/Alq(3)/Al was employed. A sharply red electroluminescence with a maximum luminance of 56. 8 cd/m(2) at 48 V was achieved.