319 resultados para Pei-Hsin Hsu
Resumo:
(eta(3)-C3H5)(2)CeCl5Mg2(tmed)(2) combined with HAl(i-Bu)(2) or Al(i-Bu)(3) can initiate the polymerization of isoprene with about 50% of the cis-1, 4 microstructure contained in the polymer. The insertion reaction of isoprene occurring between Ce3+ and e
Resumo:
聚酰亚胺(PEI)是一类高性能的工程塑料,文献报道其溶液研究结果表明这一类高分子链具有较高的链柔顺性,苯环等基团可快速旋转.本文利用核磁共振弛豫方法研究PEI的分子链运动,证实上述结论的同时.给出了定量结果.
Resumo:
Rare earth trifluoroacetates, Ln(CF3CO2)(3) (Ln = thirteen rare earth elements), combined with R(n)AlH(3-n) (R = methyl, octyl, n = 3; R = ethyl, i-Butyl, n = 2, 3) were used as catalysts for the polymerization of tetrahydrofuran (THF). The activity increased by adding propylene oxide (PO), as a promoter, to the polymerization system, producing high molecular weight polytetrahydrofuran (PTHF). The effects of Ln, PO/Ln, and Al/Ln, and others on the polymerization of THF were also studied. (C) 1993 John Wiley & Sons, Inc.
Resumo:
A valence change from RE3+ to RE2+ (RE=Eu, Sm, Yb) was observed in samples of SrB4O7: RE prepared by solid state reaction at high temperature in air. The phosphors SrB4O7: RE2+ show efficient luminescence at room temperature. The broad band d-f emissions of Eu2+ and Yb2+ are at 367 and 360 nm respectively. The sharp line f-f emissions of the Sm2+ ion (5D0-F-7(J)) are in the range 680-780 nm. The probable reasons for the valence change of Eu, Sm and Yb in this host are discussed.
Resumo:
At room temperature, the Bi3+ ion shows broad band characters of its luminescence in Ca2B2O5, M3B2O6 ( M=Ca,Sr ) and SrB4O7. The maxima of the Bi3+ S-1(0)-->P-3(1) absorption bands are located in the range of 240-300nm, but the energy variation of the corresponding P-3(1)-->S-1(0) emissions is very large. The maxima of these emission bands change from 350nm in Ca3B2O6;Bi3+ to 586nm in SrB4O7:Bi3+. The Stokes shift of the Bi3+ luminescence increases from 6118 cm-1, in Ca2B2O5:Bi3+, to 24439 cm-1, in SrB4O7:Bi3+. The emission intensity of the Bi3+ luminescence increases with the decreasing Stokes shift. It has been found that in Ca2B2O5, the Bi3+ ion could transfer its excitation energy to the R3+ ions ( R=Eu, Dy, Sm, Tb ) , but in, Ca3B2O6 and Sr3B2O6, only Bi3+-->Eu3+ was observed. No energy transfer from Bi3+ to R3+ was detected in SrB4O7.
Resumo:
Various borates, vanadates, niobates, antimonates, titanates, zirconates and CaS doped with Dy3+ were prepared. Factors which have an effect on the yellow-to-blue intensity ratio (Y/B) of Dy3+ emission are reported. Y/B increases with decreasing Z/r or electronegativity of the next-neighbour element M in the complex oxides Dy-O-M. The greater the degree of covalency between Dy3+ and O2-, the greater Y/B is. When Dy3+ is located at a site with an inverse centre and high symmetry, Dy3+ displays no luminescence. It seems that Y/B of Dy3+ located at a site deviated from an inverse centre is greater than that of Dy3+ located at a site without an inverse centre. Y/B does not vary much with the variation in concentration of Dy3+ when Dy3+ is substituted for an element with the same valency, but it does depend on the concentration of Dy3+ when Dy3+ is substituted for an element with a different valency in the matrix, because defects are formed in this case.
Resumo:
Blends of poly(ether sulphone) (PES) with a poly(ether imide) (PEI) in various proportions were prepared by the coprecipitation method. Mechanical properties and morphology of the blends were studied using tensile tests and scanning electron microscopy (SEM). The tensile moduli exhibit positive deviations from simple additivity. Marked positive deviations were also observed for ultimate strength. These results suggest that the PEI/PES blends are mechanically compatible. SEM study revealed that the blends are not homogeneous and the polymers are immiscible on the segmental level. However, the dispersions of the blends are rather fine. The interfaces between the two phases are excellently bonded; PEI and PES appear to interact well.
Resumo:
Blends of phenolphthalein poly(ether ether ketone) (PEK-C) with a poly(ether imide) (PEI) in various proportions were prepared by the coprecipitation method. Mechanical properties and morphology of the blends were studied using tensile tests and scanning electron microscopy (SEM). It was found that the tensile moduli exhibit positive deviations from simple additivity. Marked positive deviations were also observed for ultimate strength. These results suggest that the PEI/PEK-C blends are mechanically compatible. SEM study shows no evidence of phase separation, supporting the idea that the blends are compatible.
Resumo:
In this paper lanthanide-induced shifts have been measured for C-13 and H-1 nuclei of glycyl-DL-valine in the presence of three lanthanide cations (La3+, Ho3+ and Yb3+) in aqueous solution. The stability constants of the coordination compounds of rare earths (Ho, Yb) with glycyl-DL-valine have been calculated. The coordination of rare earths with the ligand has been discussed. The simulation for conformation of lanthanide coordination compounds with glycyl-DL-valine shows that the ligand is coordinated to lanthanide ion through oxygen atoms of carboxyl group and the bond length of Ln-O is 0.226 nm. In the coordination compounds glycyl-DL-valine is in extended state with minimal steric hindrance.
Resumo:
C-13 and H-1 NMR technique was used to study the interaction of Gly-Gly with heavy lanthanide cations Dy3+, Ho3+, Er3+, Tm3+ and Yb3+ in aqueous solution. The stability constants for the 1:1 and 1:2 complexes of Gly-Gly with Ho3+ and Yb3+ were determined from the titration curves of chemical shift versus concentration ratio of lanthanide to Gly-Gly. The solution structure of the Ln-Gly-Gly complex was analyzed based upon the C-13 and H-1 lanthanide induced shifts and the results show that in the complex Gly Gly is coordinated to the lanthanide ion through the carboxyl oxygens with the backbone of the ligand in an extended state.
Resumo:
本文研究了一系列芳环聚醚酰亚胺(PEI)对H_2、CO_2、O_2和N_2的透过性能与分子结构之间的关系。单醚酐型聚醚酰亚胺具有较高的透氢系数和H_2/N_2分离系数。由半刚性的4,4′-二氨基二苯酮(DABP)与柔性的三苯二醚四酸二酐(HQDPA)、二苯醚四酸二酐(ODPA)缩聚得到的聚醚酰亚胺具有很高的H_2/N_2、CO_2/N_2和O_2/N_2分离系数。
Resumo:
近年来,有关高性能树脂聚酰亚胺共混物的研究日益引起人们的关注。已经发现许多种分子结构不同的聚酰亚胺之间,聚酰亚胺与聚苯并咪唑,或聚醚醚酮能形成完全相容的共混体系,从而扩大了高性能树脂聚酰亚胺的应用范围。 酚酞型聚醚醚酮(PEK-C)是由我所研究开发出的一种新型的聚醚醚酮类高性能树脂,它具有良好的可溶性,优异的机械强度和加工流动性,已广泛应用于结构材料及复合材料的制备。为进一步扩大该树脂的应用范围,本实验室在PEK-C共混物的研究做了大量的工作。本工作研究了聚醚酰亚胺(PEI)/PEK-C共混体系的相容性。PEI和PEK-C的分子结构如下: