413 resultados para Pbs Nanocrystals


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a facile, economical microwave pyrolysis approach to synthesize fluorescent carbon nanoparticles with electrochemiluminescence properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A green one-step approach has been developed for the synthesis of amino-functionalized magnetite nanoparticles. The synthesis was accomplished by simply mixing FeCl2 with arginine under ambient conditions. It was found that the Fe2+/arginine molar ratio, reaction duration and temperature greatly influence the size, morphology and composition of magnetic nanoparticles. The arginine-stabilized magnetic nanoparticles were characterized by transmission electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, thermogravimetric analysis, and Fourier transform infrared spectroscopy techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uniform octahedral YVO4:Eu3+ microcrystals have been successfully prepared through a designed two-step hydrothermal conversion method. One-dimensional precursor Y4O(OH)(9)NO3 was first prepared through a simple hydrothermal process without using any surfactant, catalyst or template. Subsequently, well-defined octahedral YVO4 was synthesized at the expense of the precursor during a hydrothermal conversion process. XRD results demonstrate that the diffraction peaks of the final product can be well indexed to the pure tetragonal phase of YVO4.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we have described a chiral binaphthyl-based fluorescent organogel. Very interestingly, similar to sonocrystallisation of organics, ultrasound can promote the gelation while it cannot occur spontaneously at relatively high temperature or low concentration. The fluorescence enhancement of the gel obtained via ultrasound irradiation is observed. In solution there exist rapid dynamic equilibria between (S)-1 oligomers. The association interactions both between gelator molecules and between solvent and gelator molecules could together effect the helical growth of distorted (S)-1 nanocrystals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Well-defined 3D Fe3S4 flower-like microspheres were synthesized via a simple biomolecule-assisted hydrothermal process for the first time. On the basis of a series of contrast experiments, the probable growth mechanism and fabrication process of the products were proposed. The electrical conductivity property of the as-synthesized Fe3S4 sample exhibited a rectifying characteristic when a forward bias was applied for the bottom-contacted device. The magnetic properties of the products were studied as well and the results demonstrated that the products presented ferromagnetic properties related to the corresponding microstructure. In addition, we first verified that the Fe3S4 flower-like microspheres could store hydrogen electrochemically, and a discharge capacity of 214 mA h g(-1) was measured without any activation under normal atmospheric conditions at room temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Novel flowerlike SnS2 and In3+-doped SnS2 hierarchical structures have been successfully synthesized by a simple hydrothermal route using biomolecular L-Cysteine-assisted methods. The L-cysteine plays an important role both as assistant and as sulfur source. Experiments with various parameters indicate that the pH values have a strong effect on the morphology of the assembly. Based on the experiments, a growth mechanical process was proposed. The synthetic samples were characterized by XRD, SEM, TEM (HRTEM), BET measurement, TGA, and XPS in detail.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Layer-controlled hierarchical flowerlike AgIn(MoO4)(2) microstructures with "clean" surfaces using submicroplates as building blocks without introducing any template have been fabricated through a low-cost hydrothermal method. The near-infrared luminescence of lanthanide ion (Nd, Er, and Yb) doped AgIn(MoO4)(2) microstructures, in the 1300-1600 nm region, was discussed and is of particular interest for telecommunication applications. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, electron diffraction, and photoluminescence spectra were used to characterize these materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article, a two-dimensional (2D) nanoplate and a 3D hierarchical structure of BiOCl were synthesized through a simple sonochemical route. Compared with previous preparation methods, the 2D nanoplates can be prepared at a relatively short time (about 30 min) with low energy used. Additionally, these 2D nanoplates can easily assemble into a 3D hierarchical structure with the surfactant reagents. The obtained products were well crystallized and subsequently characterized by a range of methods, such as X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission microscopy (HRTEM), selected area electron diffraction (SAED) and Raman spectroscopy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CuIn(WO4)(2) porous nanospindles and nanorods were synthesized through a low-cost hydrothermal method without introducing any template or surfactants. An interesting formation mechanism, namely "oriented attachment", was observed for the growth of nanorods based on the experimental process and the anisotropic intrinsic crystalline structure of CuIn(WO4)(2), which is uncommon in such a system. The near-infrared luminescence of lanthanide ions (Er, Nd, Yb and Ho) doped CuIn(WO4)(2) nanostructures, especially in the 1300-1600 nm region, was discussed and of particular interest for telecommunications applications. X-Ray diffraction, scanning electron microscopy, transmission electron microscopy, electron diffraction and photoluminescence spectra were used to characterize these materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report a simple method for novel flower-like In4SnS8 nanostructure synthesis. A flower-like In4SnS8 nanostructure was synthesized via a one-pot hydrothermal route using the biomolecule L-cysteine as a sulfur source. The structure was characterized using X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption analysis and photoluminescence spectra. This flower-like structure consists of crosslinked nanoflakes and possesses good thermostability and a high BET surface area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Among various ECL systems, such as 9,10-diphenylanthracene, lucigenin, tris(2,2'-bipyridyl) ruthenium, peroxyoxalate, luminol, graphene, and nanocrystals, Ru(bpy)(3)(2+) ECL is one of the most widely studied ECL systems in recent years due to its broad applications in immunoassays, DNA probe assays, coreactants analysis, and aptasensors. In this review, the progress in Ru(bpy)(3)(2+) ECL has been summarized on the whole, and the future research trends have been proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uniform multicolor upconversion luminescent RE3+ doped NaYF4 nanocubes are fabricated through a facile ethylene glycol (EG)/ionic liquid interfacial synthesis route at 80 degrees C, with the ionic liquids acting as both reagents and templates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, it was found that glucose oxidase (GOD) has been stably immobilized on glassy carbon electrode modified with mesoporous carbon FDU-15 (MC-FDU-15) and Nafion by simple technique. The sorption behavior of GOD immobilized on MC-FDU-15 matrix was characterized by transmission electron microscopy (TEM), ultraviolet-visible (UV-vis), FTIR, respectively, which demonstrated that MC-FDU-15 could facilitate the electron exchange between the active center of GOD and electrode. The direct electrochemistry and electrocatalysis behavior of GOD on the modified electrode were characterized by cyclic voltammogram (CV) which indicated that GOD immobilized on Nafion and MC-FDU-15 matrices display direct, reversible and surface-controlled redox reaction with an enhanced electron transfer rate constant of 4.095 s(-1) in 0.1 M phosphate buffer solution (PBS) (pH 7.12).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, it was found that glucose oxidase (GOD) has been stably immobilized on glassy carbon electrode modified by ordered mesoporous silica-SBA-15 and Nafion. The sorption behavior of GOD immobilized on SBA-15 matrix was characterized by transmission electron microscopy (TEM), ultraviolet-visible (UV-vis), FTIR, respectively, which demonstrated that SBA-15 can facilitate the electron exchange between the electroactive center of GOD and electrode. The direct electrochemistry and electrocatalysis behavior of GOD on modified electrode were characterized by cyclic voltammogram (CV) which indicated that GOD immobilized on Nafion and SBA-15 matrices displays direct, nearly reversible and surface-controlled redox reaction with an enhanced electron transfer rate constant of 3.89 s(-1) in 0.1 M phosphate buffer solution (PBS) (pH 7.12).