424 resultados para LIGHT-EMITTING DIODES
Resumo:
A simple and efficient method for patterning polymeric semiconductors for applications in the field of organic electronics is proposed. The entire polymer layer, except for the desired pattern, is selectively lifted off from a flat poly(dimethylsiloxane) (PDMS) stamp surface by an epoxy mold with a relief pattern. This is advantageous because the elastic deformation of the PDMS stamp around protrusions of a patterned stamp under pressure can assist the plastic deformation of a polymer film along the pattern edges, yielding large area and high quality patterns, and the PDMS surface has low surface energy, which allows the easy removal of the polymer film.
Resumo:
By incorporating two phosphorescent dyes, namely, iridium(III)[bis(4,6-difluorophenyl)-pyridinato-N,C-2']picolinate (Flrpic) for blue emission and bis(2-(9,9-diethyl-9H-fluoren-2-yl)-1-phenyl-1 H-benzoimidazol-N,C-3) iridium(acetylacetonate) ((fbi)(2)Ir(acac)) for orange emission, into a single-energy well-like emissive layer, an extremely high-efficiency white organic light-emitting diode (WOLED) with excellent color stability is demonstrated. This device can achieve a peak forward-viewing power efficiency of 42.5 lm W-1, corresponding to an external quantum efficiency (EQE) of 19.3% and a current efficiency of 52.8 cd A(-1). Systematic studies of the dopants, host and dopant-doped host films in terms of photophysical properties (including absorption, photoluminescence, and excitation spectra), transient photoluminescence, current density-voltage characteristics, and temperature-dependent electroluminescence spectra are subsequently performed, from which it is concluded that the emission natures of Flrpic and (fbi)(2)Ir(acac) are, respectively, host-guest energy transfer and a direct exciton formation process. These two parallel pathways serve to channel the overall excitons to both dopants, greatly reducing unfavorable energy losses.
Resumo:
A new series of film-forming, low-bandgap chromophores (1a,b and 2a,b) were rationally designed with aid of a computational study., and then synthesized and characterized. To realize absorption and emission above the 1000 nm wavelength, the molecular design focuses on lowering the LUMO level by fusing common heterocyclic units into a large conjugated core that acts an electron acceptor and increasing the charge transfer by attaching the multiple electron-donating groups at the appropriate positions of the acceptor core. The chromophores have bandgap levels of 1.27-0.71 eV, and accordingly absorb at 746-1003 nm and emit at 1035-1290 nm in solution. By design, the relatively high molecular weight (up to 2400 g mol(-1)) and non-coplanar structure allow these near-infrared (NIR) chromophores to be readily spin-coated as uniform thin films and doped with other organic semiconductors for potential device applications. Doping with [6,6]-phenyl-C-61 butyric acid methyl ester leads to a red shift in the absorption on]), for la and 2a. An interesting NIR electrochromism was found for 2a, with absorption being turned on at 1034 nm when electrochemically switched (at 1000 mV) from its neutral state to a radical cation state. Furthermore, a large Stokes shift (256-318 nm) is also unique for this multidonor-acceptor type of chromophore.
Resumo:
Two simple triphenylamine/oxadiazole derivatives were synthesized and fully characterized; their multifunctionality as highly efficient non-doped blue fluorescence, excellent red phosphorescent host and single-doped two-color based white OLEDs has been demonstrated.
Resumo:
Two bridged triphenylamine-triphenylsilane (BTPASi) hybrids have been designed as host materials for phosphorescent OLEDs; devices with the novel host materials achieve maximum external quantum efficiencies as high as 15.4% for blue and 19.7% for green electrophosphorescence.
Resumo:
The synthesis, isomeric studies, and photophysical characterization of a series of multifunctional cyclometalated iridium(III) complexes containing a fluoro- or methyl-substituted 2[3-(N-plienylcarbazolyl)]pyridine molecular framework are presented. All of the complexes are thermally stable solids and highly efficient electrophosphors. The optical, electrochemical, photo-, and electrophosphorescence traits of these iridium phosphors have been studied in terms of the electronic nature and coordinating site of the aryl or pyridyl ring substituents. The correlation between the functional properties of these phosphors and the results of density functional theory calculations was made. Arising from the propensity of the electron-rich carbazolyl group to facilitate hole injection/transport, the presence of such a moiety can increase the highest-occupied molecular orbital levels and improve the charge balance in the resulting complexes relative to the parent phosphor with 2-phenylpyridine ligands. Remarkably, the excited-state properties can be manipulated through ligand and substituent effects that allow the tuning of phosphorescence energies from bluish green to deep red.
Resumo:
A series of carbazole derivatives was synthesized and their electrical and photophysical properties were investigated. It is shown that the triplet energy levels of these hosts are higher than that of the most popular blue phosphorescent material iridium(III) bis[(4,6-difluorophenyl)pyridinato-N,C-2'] picolinate (FIrpic) and the most extensively used phosphorescent host material 4,4'-N,N'-dicarbazole-biphenyl (CBP). These new host materials also showed good thermal stability and high glass transition temperatures (T-g) ranging from 78 to 115 degrees C as the linkage group between the carbazoles was altered. Photophysical measurements indicate that the energy transfer between these new hosts and FIrpic is more efficient than that between CBP and FIrpic. Devices incorporating these novel carbazole derivatives as the host material doped with FIrpic were fabricated with the configurations of ITO/NPB (40 nm)/host:FIrpic (30 nm)/BCP (15 nm)/AlQ (30 nm)/LiF (1 nm)/Al (150 nm). High efficiencies (up to 13.4 cd/A) have been obtained when 1,4-bis (4-(9H-carbazol-9-yl)phenyl)cyclohexane (CBPCH) and bis(4-(9H-carbazol-9-yl)phenyl) ether (CBPE) were used as the host, respectively.
Resumo:
By fusing an electron-deficient ring system with the phenyl ring of a 2-phenylpyridine (ppy)-type ligand, a new and synthetically versatile strategy for the phosphorescence color tuning of cyclometalated iridium(III) and platinum(II) metallophosphors has been established. Two robust red electrophosphors with enhanced electron-injection/electron-transporting features were prepared by using an electron-trapping fluoren-9-one chromophore in the ligand design. The thermal, photophysical, redox and electrophosphorescent properties of these complexes are reported. These exciting results can be attributed to a switch of the metal-to-ligand charge-transfer (MLCT) character of the transition from the pyridyl groups in the traditional Ir-III or Pt-II ppy-type complexes to the electron-deficient ring core, and the spectral assignments corroborate well with the electrochemical data as well as the timedependent density functional theory (TD-DFT) calculations. The electron-withdrawing character of the fused ring results in much more stable MLCT states, inducing a substantial red-shift of the triplet emission energy from yellow to red for the Ir-III complex and even green to red for the PtII counterpart.
Resumo:
In this paper. the undercut structures were fabricated by microtransfer printing of metal films on the surface of photoresist combined with UV exposure and photoresist film developing. The patterned metal films were used as mask to realize the selective UV exposure of photoresist Firstly. The undercut structures. which consist of the top metal films and the patterned bottom photoresist, formed in the subsequent developing process because of the lateral dissolving of photoresist at the edge of the unexposed regions. The method proposed in this paper has wider tolerance to the changing of the patterning parameters. but, without effect on patterning resolution since the metal film was used as the top layer. The undercut Structures were Used as separators to pattern passive-matrix display of organic light-emitting diodes (OLEDs). No visible difference of the device performance was observed Compared with the OLEDs patterned by the shadow mask.
Resumo:
The unique strategy for electrochemiluminescence (ECL) sensor based on the quantum dots (QDs) oxidation in aqueous solution to detect amines is proposed for the first time. Actually, there existed two QDs ECL peaks in anhydrous solution, one at high positive potential and another at high negative potential. However, here we introduced the QDs oxidation ECL in aqueous solution to fabricate a novel ECL sensor. Such sensor needed only lower positive potential to produce ECL, which could prevent the interferences resulted from high potential as that of QDs reduction ECL in aqueous solution. Therefore, the present work not only extended the QDs oxidation ECL application field from anhydrous to aqueous solution but also enriched the variety of ECL system in aqueous solution. Furthermore, we investigated the QDs oxidation ECL toward different kinds of amines, and found that both aliphatic alkyl and hydroxy groups could lead to the enhancement of ECL intensity. Among these amines, 2-(dibutylamino)ethanol (DBAE) is the most effective one, and accordingly, the first ECL sensing application of the QDs oxidation ECL toward DBAE is developed; the as-prepared ECL sensor shows wide linear range, high sensitivity, and good stability.
Resumo:
A series of block copolymers containing nonconjugated spacer and 3D pi-pi stacking structure with simultaneous blue-, green-, and yellow-emitting units has been synthesized and characterized. The dependence of the energy transfer and electroluminescence (EL) properties of these block copolymers on the contents of oligo(phenylenevinylene)s has been investigated. The block copolymer (GEO8-BEO-YEO4) with 98.8% blue-emitting oligomer (BEO), 0.8% green-emitting oligomer (GEO), and 0.4% yellow-emitting oligomer (YEO) showed the best electroluminescent performance, exhibiting a maximum luminance of 2309 cd/m(2) and efficiency of 0.34 cd/A. The single-layer-polymer light-emitting diodes device based on GEO2-BEO-YEO4 emitted greenish white light with the CIE coordinates of (0.26, 0.37) at 10 V. The synergetic effect of the efficient energy transfer and 3D pi-pi stack of these block copolymers on the photoiuminescent and electroluminescent properties are investigated.
Resumo:
A series of monodisperse oligo(9,9-di-n-octylfluorene-co-bithiophene)s (OFbTs) with molecular lengths of up to 19.5 nm and molecular weights up to 7025 g mol(-1) has been synthesized by a divergent/convergent approach involving Stille coupling reactions. Stille coupling is quite efficient in preparing this class of oligomers, and even the molecule with nine fluorene units and eight bithiophene units (F9Th16) can be synthesized in a yield as high as 70%. Because of easy functionalization of the thiophene ring at its alpha position, no additional protecting group allowing activation for further reaction is necessary. However, the synthetic routes must be optimized to eliminate contamination of the targeting compounds with the homocoupling product of the organotin reagents. Synthesis of the longest oligomer F13Th24 in a relative large quantity is limited by its low yield due to the pronounced ligand-exchange side reactions of the starting materials and reaction intermediates. All oligomers longer than F4Th6 are nematic mesomorphs and exhibit enhanced glass transition temperature and clearing point with increasing molecular length, as revealed by differential scanning calorimetry and polarizing optical microscopy.
Resumo:
A series of monodisperse oligo(9,9-di-n-octylfluorene-2,7-vinylene)s (OFVs) with fluorene units up to 11 has been synthesized following a divergent approach. Chain length was found to affect not only photophysical properties but also thermal properties. Absorption and photoluminescence spectra are red-shifted with increasing chain length. The effective conjugated length has been extrapolated to be as long as 19 fluorene vinylene units, indicative of a well-conjugated system. With the number of fluorene units > 5, the oligomers exhibit nematic mesomorphism. Glass transition temperature (T-g) and clearing point temperature (T-c) increase with increasing molecular length and with those of OFV11 up to 71 and 230 degrees C, respectively. The oligomers can form uniform films by solution casting for fabrication of light-emitting diodes. With a device structure of ITO/ PEDOT:PSS/OFV11/Ca/Al, a current efficiency of 0.8 cd.A(-1) at a brightness of 1300 cd.m(-2) along with a maximum brightness of 2690 cd.m(-2) have been realized. This performance is notably superior to that of the corresponding polymer.
Resumo:
有机发光二极管(Organic Light-Emitting Diodes,OLEDs)以其制备工艺简单、成本低、发光颜色可在可见光区内任意调节以及易于大面积制作和柔韧弯曲等优点,被认为是未来重要的显示技术之一,在未来照明光源领域也显示了诱人的应用前景.一般认为,如果OLED的发光效率超过100 lm/W,就有可能取代一般照明.本文综述了实现白光OLED的方法及其最新进展,并对白光OLED存在的问题及其发展趋势进行了讨论.