332 resultados para Facciata continua, Sentry Glass Plus, Vetro strutturale, CNR-DT 210
Resumo:
A novel protocol has been established to separate dsDNA fragments with high efficiency on glass chips by using an ultralow viscosity sieving matrix with added glucose. Low-molecular-weight hydroxypropylmethylcellulose (HPMC), with a viscosity nearly equivalent to that of water, was used to electrophoretically separate fluorescent inter-calator-labeled double-stranded DNA (dsDNA) fragments on microfluidic glass chips. In comparison with conventional sieving protocols, low-molecular-weight HPMC as sieving matrix could result in reduced running cost and analysis time, in addition to a comparable separation efficiency of dsDNA fragments. In this paper, the addition of glucose was investigated to enhance the separation of DNA in the lowest viscosity polymer evaluated. The effect of staining dye and field strength were also evaluated. At an applied electric field strength of 200 V/cm, satisfactory resolution of the PBR322/HaeIII DNA marker could be achieved within 4 min by using 2% HPMC-5 with 6% glucose added. Coelectrophoresing PCR product along with phiX174/HaeIII DNA sizing marker was also demonstrated by using the ultralow viscosity HPMC-5 solution on a glass chip.
Resumo:
Melt-spun ribbon and bulk samples in cylindrical rod form with diameter ranging from 2 mm to 4 mm of Ti40Cu40Zr10Ni10 alloy were prepared by melt-spinning technique and copper mould casting method, respectively. The microstructure, thermal stability and mechanical properties of the bulk samples were investigated. A completely glassy single phase is formed in the 2 mm rod sample. Increasing the diameter of the rod samples resulted in the formation of CuTi crystalline phase in the 3 mm and 4 mm rod samples.
Resumo:
Linkam CSS450 optical shearing stage, wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering(SAXS) were used to investigate the effect of shear on crystal structure and crystallization morphology of the glass bead filled polypropylene( PP). The results indicate that the glass bead worked as nucleating agent for the glass bead filled PP, compared with pure PP it restrained the formation of beta-crystal after shear treatment. When the mean size of glass bead is smaller(4 mu m) shear rate had less effect on the formation of beta-crystal of PP obviously.
Resumo:
Novel bioactive glass (13G) nanoparticles/poly(L-lactide) (PLLA) composites were prepared as promising bone-repairing materials. The BG nanoparticles (Si:P:Ca = 29:13:58 weight ratio) of about 40 run diameter were prepared via the sol-gel method. In order to improve the phase compatibility between the polymer and the inorganic phase, PLLA (M-n = 9700 Da) was linked to the surface of the BG particles by diisocyanate. The grafting ratio of PLLA was in the vicinity of 20 wt.%. The grafting modification could improve the tensile strength, tensile modulus and impact energy of the composites by increasing the phase compatibility.
Resumo:
In this paper, we introduced a novel bonding method of glass wafers by Diels-Alder reaction at mild temperature. After standard hydroxylization and aminosilylation, two wafers were modified by 2-furaldehyde and maleic anhydride, respectively. Then they were brought into close contact and tightly held with a clamping fixture. A strong bonding could be achieved by annealing for 5 h at 200 degrees C. Bonding strength is as high as 1.78 MPa and sufficient for most application of microfluidic chips.
Resumo:
In this study, binodal curves and tie line data of [Amim]Cl + salt (K3PO4, K2HPO4, K2CO3) + water aqueous biphasic systems (ABS) were measured and correlated satisfactorily with the Merchuk equation and Othmer-Tobias and Bancroft equations, respectively. [Amim]Cl could be recovered from aqueous solutions using the ABS, and the recovery efficiency could reach 96.80%. The recovery efficiency was influenced by the concentrations of the salts and their Homeister series: K3PO4 > K2HPO4 > K2CO3. Our method provides a new and effective route for the recovery of hydrophilic IL using [Amim]Cl + salt + water ABS from aqueous solutions.
Resumo:
Ti40Cu40Ni10Zr10-xScx (x = 0.5 and 1, at%) alloys were prepared by copper mould casting method. Microstructures of the phi 3 mm rod alloys were investigated by XRD and SEM. The results showed that the phi 3 mm rods were glassy matrix with TiCu crystalline phase. Mechanical properties were studied by compressive test. Ti40Cu40Ni10Zr9Sc1 alloy exhibited good compressive strength over 2200 MPa and superior compressive deformation is about 7.9%.
Resumo:
SiO2-CaO-P2O5 ternary bioactive glass ceramic nanoparticles were prepared via the combination of sol-gel and coprecipitation processes. Precursors of silicon and calcium were hydrolyzed in acidic solution and gelated in alkaline condition together with ammonium dibasic phosphate. Gel particles were separated by centrifugation, followed by freeze drying, and calcination procedure to obtain the bioactive glass ceramic nanoparticles. The investigation of the influence of synthesis temperature on the nanopartilce's properties showed that the reaction temperature played an important role in the crystallinity of nanoparticle. The glass ceramic particles synthesized at 55 degrees C included about 15% crystalline phase, while at 25 degrees C and 40 degrees C the entire amorphous nanopowder could be obtained.
Resumo:
In this report, gold nanoparticles (AuNPs) labeled by Raman reporters (AuNPs-R6G) were assembled on glass and used as the seeds to in situ grow silver-coated nanostructures based on silver enhancer solution, forming the nanostructures of AuNPs-R6G@Ag, which were characterized by scanning electron microscopy (SEM) and UV-visible spectroscopy. More importantly, the obtained silver-coated nanostructures can be used as a surface enhancement Raman scattering (SERS) substrate. The different SERS activities can be controlled by the silver deposition time and assembly time of AuNPs-R6G on glass. The results indicate that the maximum SERS activity could be obtained on AuNPs-R6G when these nanostructures were assembled on glass for 2 h with silver deposition for 2 min.
Resumo:
Highly ordered, vertically oriented TiO2 nanotube arrays were prepared by potentiostatic anodization of titanium on FTO-coated glass substrate and for the first time successfully applied in the fabrication of solid-state dye sensitized solar cells (SSDSCs), giving a power conversion efficiency of 1.67% measured under an irradiation of air mass 1.5 global (AM 1.5 G) full sunlight. Furthermore, 3.8% efficiency was reached with a 2.8 mu m thin TiO2 nanotube array film based on a metal free organic dye using ionic liquid electrolyte.
Resumo:
Phase diagrams corresponding to aqueous biphasic systems of salt (the organic ionic liquid of salts [C(4)mim]Cl, [C(6)mim]Cl, and [C(8)mim]Cl) + salt (K3PO4, K2CO3) + water were determined at 298.15 K. The binodal curve was fitted to the Merchuk equation. Tie lines assigned from mass phase ratios according to the lever arm rule were satisfactorily described using the Othmer-Tobias and Bancroft equations.
Resumo:
Notch Izod impact strength of poly(propylene) (PP)/glass bead blends was studied as a function of temperature. The results indicated that the toughness for various blends could undergo a brittle-ductile transition (BDT) with increasing temperature. The BDT temperature (T-BD) decreased with increasing glass bead content. Introducing the interparticle distance (ID) concept into the study, it was found that the critical interparticle distance (IDc) reduced with increasing test temperature correspondingly. The static tensile tests showed that the Young's modulus of the blends decreased slightly first and thereafter increased with increasing glass bead content. However, the yield stress decreased considerably with the increase in glass bead content. Dynamic mechanical analysis (DMA) measurements revealed that the heat-deflection temperature of the PP could be much improved by the incorporation of glass beads. Moreover, the glass transition temperature (T-g) increased obviously with increasing glass beads content. Differential scanning calorimetry (DSC) results implied that the addition of glass beads could change the crystallinity as well as the melting temperature of the PP slightly.