437 resultados para Emission intensities
Resumo:
IEECAS SKLLQG
Resumo:
Well-aligned TiO2/Ti nanotube arrays were synthesized by anodic oxidation of titanium foil in 0.5 wt.% HF in various anoclization voltages. The images of filed emission scanning electron microscopy indicate that the nanotubes structure parameters, such as diameter, wall thickness and density, can be controlled by adjusting the anoclization voltage. The peaks at 25.3 degrees and 48.0 degrees of X-ray diffraction pattern illuminate that the TiO2 nanotube arrays annealed at 500 degrees C are mainly in anatase phase. The filed emission (FE) properties of the samples were investigated. A turn-on electric field 7.8 V/mu m, a field enhancement factors approximately 870 and a highest FE current density 3.4 mA/cm(2) were obtained. The emission current (2.3 mA/cm(2) at 18.8 V/mu m) was quite stable within 480 min. The results show that the FE properties of TiO2/Ti have much relation to the structure parameters.
Resumo:
Highly ordered TiO2/Ti nanotube arrays were fabricated by anodic oxidation method in 0.5 wt% HF. Using prepared TiO2/Ti nanotube arrays deposited Ni nanoparticles as substrate, high quality diamond-like carbon nanorods (DLCNRs) were synthesized by a conventional method of chemical vapor deposition at 750 degrees C in nitrogen atmosphere. DLCNRs were analyzed by filed emission scanning electron microscopy and Raman spectrometer. It is very interesting that DLCNRs possess pagoda shape with the length of 3-10 mu m. Raman spectra show two strong peaks about 1332 cm (1) and 1598 cm (1), indicating the formation of diamond-like carbon. The field emission measurements suggest that DLCNRs/TiO2/Ti has excellent field emission properties, a low turn-on field about 3.0 V/mu m, no evident decay at 3.4 mA/cm(2) in 480 min. (C) 2009 Elsevier B. V. All rights reserved.