306 resultados para Collagen deposition
Resumo:
Rare-earth and lead ions (Eu3+, Tb3+, Dy3+, Pb2+) doped Ca2Y8 (SiO4)(6)O-2 and Ca2Gd8(SiO4)(6)O-2 thin films have been dip- coated on silicon and quartz glass substrates through the sol- gel route. X- Ray diffraction (XRD), TG- DTA, scanning electron microscopy (SEM), atomic force microscopy (AFM), FT- IR and luminescence excitation and emission spectra as well as luminescence decays were used to characterize the resulting films. The results of XRD reveal that these films remain amorphous below 700 degreesC, begin to crystallize at 800 degreesC and crystallize completely around 1000 degreesC with an oxyapatite structure. The grain structure of the film can be seen clearly from SEM and AFM micrographs, where particles with various shapes and average size of 250 nm can be resolved. Eu3+ and Tb3+ show their characteristic red (D-5(0)-F-7(2)) and green (D-5(4) - F-7(5)) emission in the films with a quenching concentration of 10 and 6 mol% (of Y3+), respectively. The lifetime and emission intensity of Eu3+ increase with the temperature treatment from 700 to 1100 degreesC, while those of Tb3+ show a maximum at 800 degreesC. Energy transfer phenomena have been observed by activating the oxyapatite film host- lattice Ca2Gd8(SiO4)(6)O-2 with Tb3+ (Dy3+). In addition, Pb2+ can sensitize the Gd3+ sublattice in Ca2Gd8(SiO4)(6)O-2.
Resumo:
Eu3+-activated calcium silicate (CaO-SiO2:Eu3+) luminescent films were prepared by the sol-gel method. The structural evolution of the film was studied by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), and the luminescence properties of the phosphor films were investigated as a function of heat treatment temperature. The XRD study indicates that a kilchoanite phase forms in the film sintered at 800 degreesC, which is different from that in gel powder treated under the same conditions. The SEM results show that the film thickness decreases and the particles in the film become smaller with increasing heat treatment temperature. The CaO-SiO2:Eu film shows the characteristic emission of Eu3+ under UV excitation, with the Eu3+ D-5(0)-->F-7(2) band (616 nm) being the most prominent. A large difference in the Eu3+ lifetime is observed between the film samples treated at 500 and 700 degreesC (or above). Concentration quenching occurs when the Eu3+ doping concentration is above 6 mol% of Ca2+ in the film.
Resumo:
SnO2 thin films with extremely preferred orientation along (101) plane were made by LB technique and characterized by FTIR,, UV-visible, X-ray diffraction, X-ray photoelectron spectroscopy and SEM.
Resumo:
Langmuir-Blodgett (LB) monolayers of three kinds of soluble polyimides were prepared with the direct deposition method, The monolayer structures were characterized with W-vis absorption spectroscopy, the wide angle X-ray scattering method and electrochemical techniques. The polyimide molecules in the LB monolayers lie orderly on the substrate surfaces with the orientation in which the dianhydride group is normal to the substrate surface and two carbonyl oxygen groups close to the surface. Therefore, the thickness of the three kinds of polyimide LB monolayers are the same because it depends on the distance between the two carbonyl oxygen groups in the same ring. The area of monomeric units are dependent on the length of the diamine group. The model of the molecular packing proposed from the quantomechanical calculation is in good agreement with the experimental results. (C) 1997 Elsevier Science S.A.
Resumo:
Supported lipid membranes consisting of self-assembled alkanethiol and lipid monolayers on gold substrates could be produced by three different deposition methods: the Langmuir-Blodgett (L-B) technique, the painted method, and the paint-freeze method, By using cyclic voltammetry, chronoamperometry/chronocoulometry and a.c. impedance measurements, we demonstrated that lipid membranes prepared by these three deposition methods had obvious differences in specific capacitance, resistance and thickness. The specific capacitance of lipid membranes prepared by depositing an L-B monolayer on the alkanethiol alkylated surfaces was 0.53 mu Fcm(-2), 0.44 mu Fcm(-2) by the painted method and 0.68 mu Fcm(-2) by the paint-freeze method. The specific conductivity of lipid membranes prepared by the L-B method was over three times lower than that of the painted lipid membranes, while that of the paint-freeze method was the lowest. The difference among the three types of lipid membranes was ascribed to the influence of the organic solvent in lipid films and the changes in density of the films. The lipid membranes prepared by the usual painted method contained a trace amount of the organic solvent. The organic solvent existing in the hydrocarbon core of the membrane reduced the density of the membrane and increased the thickness of the membrane. The membrane prepared by depositing an L-B monolayer containing no solvent had higher density and the lowest fluidity, and the thickness of the membrane was smaller. The lipid membrane prepared by the paint-freeze method changed its structure sharply at the lower temperature. The organic solvent was frozen out of the membrane while the density of the membrane increased greatly. All these caused the membrane to exist in a ''tilted'' state and the thickness of this membrane was the smallest. The lipid membrane produced by the paint-freeze method was a membrane not containing organic solvent. This method was easier in manipulation and had better reproducibility than that of the usual painting method and the method of forming free-standing lipid film. The solvent-free membrane had a long lifetime and a higher mechanical stability. This model membrane would be useful in many areas of scientific research.
NOVEL DEPOSITION OF LEAD ON A GLASSY-CARBON ELECTRODE AND ITS ELECTROCATALYTIC REDUCTION OF DIOXYGEN
Resumo:
Deposition potentials of Lithium and Sodium ions have been measured in binary chloride systems (LiCl-KCl, NaCl-KCl) by I-V curve method, to provide a theoretical base for preparing high purity Al-Li alloy by electrolysis in molten salt. The changes of free energy and enthalpy were calculated in terms of depolarization values on Al cathode. Thermodynamic meaning of depolarization was discussed in details and the empirical relation between binary alloy type and depolarization type was proposed. It is shown for the first time that the presence of a third element in Al-Li alloy can strengthen depolarization of Li ion at Al alloy cathode and give foundation for preparing high purity Al-Li-M ternary alloy. The effect of LiCl concentration on deposition potentials of Li ion at Al cathode in KCl-LiCl melt was studied and average active coefficient of LiCl was obtained.
Resumo:
A new expression for calculating suspended fine-sediment deposition rate is developed based on theoretic analysis and experiments. The resulting equation is applied to simulation of fine sediment deposition in the reclaimed land in the Hangzhou Bay, China. The hydrodynamic environment in this area is solved by use of a long wave model, which gives the 2D-velocity field and considers bathymetric changes due to fine sediment deposition. The expression is proved convenient to use in engineering practice, and the predicted deposition rate agrees with the annual data available from field measurements from the first year to the third year after the construction of the long groin as a reclaiming method.
Resumo:
Nitrogen deposition experiments were carried out in alpine meadow ecosystems in Qinghai-Xizang Plateau in China, in order to explore the contribution of nitrogen deposition to carbon sequestration in alpine meadows. Two methods were used in this respect. First, we used the allocation of N-15 tracer to soil and plant pools. Second, we used increased root biomass observed in the nitrogen-amended plots. Calculating enhanced carbon storage, we considered the net soil CO2 emissions exposed to nitrogen deposition in alpine meadows. Our results show that nitrogen deposition can enhance the net soil CO2 emissions, and thus offset part of carbon uptake by vegetation and soils. It means that we have to be cautious to draw a conclusion when we estimate the contribution of nitrogen deposition to carbon sequestration based on the partitioning of N-15 tracer in terrestrial ecosystems, in particular in N-limited ecosystems. Even if we assess the contribution of nitrogen deposition to carbon sequestration based on increased biomass exposed to nitrogen deposition in terrestrial ecosystems, likewise, we have to consider the effects of nitrogen deposition on the soil CO2 emissions.