281 resultados para Chemical study
Resumo:
Photodissociation dynamics of ketene following excitation at 208.59 and 213.24 nm have been investigated using the velocity map ion-imaging method. Both the angular distribution and translational energy distribution of the CO products at different rotational and vibrational states have been obtained. No significant difference in the translational energy distributions for different CO rotational state products has been observed at both excitation wavelengths. The anisotropy parameter beta is, however, noticeably different for different CO rotational state products at both excitation wavelengths. For lower rotational states of the CO product, beta is smaller than zero, while beta is larger than zero for CO at higher rotational states. The observed rotational dependence of angular anisotropy is interpreted as the dynamical influence of a peculiar conical intersection between the B-1(1) excited state and (1)A(2) state along the C-S-I coordinate.
Resumo:
The protein binding constant, binding sites of the Strychnos alkaloid-strychnine and bovine serum albumin (BSA) was determined by capillary electrophoretic frontal analysis (CE-FA) for the first time. The experiment was carried out in a polyacrylamide-coated fused silica capillary (48.4 cmx50 mu m i.d., 38.1 cm effective length) with 20 mmol/L citrate/MES buffer (pH 6.0, ionic strength 0.17). The applied voltage was 12 kV and detection wavelength was set at 257 nm. The plateau height of the peak was employed to determine the unbound concentration of drug in BSA equilibrated sample solution based on the external drug standard in the absence of protein. The present method provides a convenient, accurate technique for the early stage of drug screening.
Resumo:
An approach for the separation and identification of components in a traditional Chinese medicine Psoralea corylifolia was developed. Ion-exchange chromatography (IEC) was applied for the fractionation of P corylifolia extract, and then followed by concentration of all the fractions with rotary vacuum evaporator. Each of the enriched fractions was then further separated on an ODS column with detection of UV absorbance and atmospheric pressure chemical ionization mass spectrometer (APCI/MS), respectively, and also analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS) with matrix of oxidized carbon nanotubes. Totally more than 188 components in P. corylifolia extract were detected with this integrated approach, and 12 of them were preliminary identified according to their UV spectra and mass spectra performed by APCI/MS and MALDI-TOF/MS. The obtained analytical results not only demonstrated the powerful resolution of integration IEC fractionation with reversed-phase liquid chromatography (RPLC)-APCI/MS and MALDI-TOF/MS for analysis of compounds in a complex sample, but also exhibited the superiority of APCI/MS and MALDI-TOF/MS for identification of low-mass compounds, such as for study of traditional Chinese medicines (TCMs) and metabolome. (c) 2005 Published by Elsevier B.V.
Resumo:
For the first time, we have studied the potential-energy curves, spectroscopic terms, vibrational levels, and the spectroscopic constants of the ground and low-lying excited states of NiI by employing the complete active space self-consistent-field method with relativistic effective core potentials followed by multireference configuration-interaction calculations. We have identified six low-lying electronic states of NiI with doublet spin multiplicities, including three states of Delta symmetry and three states of Pi symmetry of the molecule within 15 000 cm(-1). The lowest (2)Delta state is identified as the ground state of NiI, and the lowest (2)Pi state is found at 2174.56 cm(-1) above it. These results fully support the previous conclusion of the observed spectra although our computational energy separation of the two states is obviously larger than that of the experimental values. The present calculations show that the low-lying excited states [13.9] (2)Pi and [14.6] (2)Delta are 3 (2)Pi and 3 (2)Delta electronic states of NiI, respectively. Our computed spectroscopic terms, vibrational levels, and spectroscopic constants for them are in good agreement with the experimental data available at present. In the present work we have not only suggested assignments for the observed states but also computed more electronic states that are yet to be observed experimentally. (c) 2005 American Institute of Physics.