377 resultados para BLOCK-COPOLYMER LITHOGRAPHY
Phenylene vinylene-based electroluminescent polymers with electron transport block in the main chain
Resumo:
We report a new route for the design of soluble phenylene vinylene (PV) based electroluminescent polymers bearing electron-deficient oxadizole (OXD) and triazole (TZ) moieties in the main chains with the aryloxy linkage. Both series of the PV-based polymers were prepared by Wittig reaction. By properly adjusting the OXD and/or TZ content through copolymerization, we can achieve an enhanced balance of hole- and electron injections, such that the device efficiency is significantly improved. Light-emitting diodes fabricated from P1, P2, P3, P4, P5, P6, and P7 with the configuration of Indium-Tin Oxide (ITO)/Poly (styrene sulfonic acid) doped poly (ethylenedioxythiophene) (PEDOT)/polymer/Ca/Al, emit bright green light with the maximum peak around 500 nm. For the device using the optimal polymer (P4) as emitting layer, a maximum brightness of 1300 cd/m(2) at 20 V and a maximum luminance efficiency of 0.325 cd/A can be obtained.
Resumo:
Ring- and rod-shaped P4VP-b-PS-b-P4VP ( PS, polystyrene; P4VP, poly( 4-vinylpyridine)) triblock copolymer aggregates are used as templates to synthesize ZnS nanocrystals. Herein, PVP serves as both a stabilizing agent and a structure- directing agent. The resulting ZnS nanocrystals could be aligned along the corona of the copolymer aggregates in near-perfect structures through control of both the molar ratio of Zn2+ to P4VP and the reaction time. The diameter of the as-synthesized ZnS layer on the surface of polymer template is approximate 2 - 3 nm. High-resolution transmission electron microscopy images reveal that the ZnS particles are single crystal in a zinc blende structure. This method provides a simple, reproducible route at room temperature to prepare assembled hybrid polymer - semiconductor nanocrystal nanocomposites.
Resumo:
The synthesis of a novel ABC ternary segregated H-shaped copolymer is described, of which a central poly(ethylene glycol) (PEG) chain is terminated on both sides by polystyrene (PS) and poly(tert-butylacrylate) (PtBA) chains. The synthetic procedure involves functionalization of PEG by 2-bromosuccinic anhydride followed by esterification of 1,6-hexanediol, which gives its ends the bifunctional nature that allows sequential growth of two PS, then two PtBA arms via atom transfer radical polymerization (ATRP). The resulting segregated H-shaped copolymers were characterization by NMR spectroscopy and gel permeation chromatography (GPC). All these copolymers were affirmed to have well-defined structures and narrow molecular weight distributions.
Resumo:
A novel supramolecular inclusion complex of alpha-CD/C-60 was synthesized using anionic C-60. The reaction progress was monitored in situ by visible and near-IR spectroscopy. The obtained complex was characterized by UV-vis, C-13 NMR, MALDI-TOF, and cyclic voltammetry. The induction and dispersion forces are considered to be the major driving forces for the formation of a resulting alpha-CD/C-60(.-) inclusion complex.
Resumo:
A modified tapping mode of the atomic force microscope (AFM) was introduced for manipulation, dissection, and lithography. By sufficiently decreasing the amplitude of AFM tip in the normal tapping mode and adjusting the setpoint, the tip-sample interaction can be efficiently controlled. This modified tapping mode has some characteristics of the AFM contact mode and can be used to manipulate nanoparticles, dissect biomolecules, and make lithographs on various surfaces. This method did not need any additional equipment and it can be applied to any AFM system.
Resumo:
The aggregation of rod-flexible ABA and BAB triblock (A was rod block and repulsive with block B) copolymers in a thin film was studied as a function of varying the rigidity (eta) and the length of the rod block by Monte Carlo simulation. The rigidity of block A was defined as eta = R-c/R-max in this study. R-c, was the end-to-end distance below which the conformation of the block was not allowed, whereas R-max, was the longest end-to-end distance that the block could be. If eta = 0 the block was flexible, whereas if eta = 1 the block was a straight rod. The simulation results showed that the ABA triblock copolymer film were likely to form lamella structure with increasing the rigidity (eta) of block A. The lamellas were parallel each other and perpendicular to the film surface. However, the aggregation of BAB triblock copolymers tended to change from lamella to cylinder structure with increasing the rigidity (eta) of block A. Typical lamella and cylinder co-exist structure was obtained at eta = 0.504 for the BAB copolymer film. On the other hand, the simulation results indicated that the film changed from disorder to order, then to disorder structure with increasing the relative length of B block for both ABA and BAB copolymer films.
Resumo:
The confined crystallization behavior, melting behavior, and nonisothermal crystallization kinetics of the poly(ethylene glycol) block (PEG) in poly(L-lactide)poly(ethylene glycol) (PLLA-PEG) diblock copolymers were investigated with wideangle X-ray diffraction and differential scanning calorimetry. The analysis showed that the nonisothermal crystallization behavior changed from fitting the Ozawa equation and the Avrami equation modified by Jeziorny to deviating from them with the molecular weight of the poly(L-lactide) (PLLA) block increasing. This resulted from the gradual strengthening of the confined effect, which was imposed by the crystallization of the PLLA block. The nucleation mechanism of the PEG block of PLLA15000-PEG5000 at a larger degree of supercooling was different from that of PLLA2500-PEG5000, PLLA5000-PEG5000, and PEG5000 (the numbers after PEG and PLLA denote the molecular weights of the PEG and PLLA blocks, respectively). They were homogeneous nucleation and heterogeneous nucleation, respectively.
Resumo:
The poly(L-lactide) (PLLA)/starch blends were prepared by the PLLA grafting starch (PLLA-g-St) copolymers as a compatibilizer, and their thermal, mechanical and morphological characterizations were performed to show the better performance of these blends compared to the virgin PLLA/starch blend without the compatibilizer, including PLLA crystallinity, interfacial adhesion between the PLLA matrix and starch dispersive phases, mechanical test, medium resistance, and contact angle. The 50/50 composite of PLLA/starch compatibilized by 10% PLLA-g-St gave a tensile strength of 24.7 MPa and an elongation at break of 8.7%, respectively, vs. 11.3 MPa and 1.5%, respectively, for the simple 50/50 blend of PLLA/starch.
Resumo:
Isothermal crystallization kinetics and morphology of the poly(L-lactide) block in poly(L-lactide)poly(ethylene glycol) diblock copolymers were studied by differential scanning calorimetry (DSC) and polarized optical microscopy (POM), respectively. The results were compared with that of the PLLA homopolymer. The introduction of the PEG block accelerated the crystallization rate of the PLLA block and promoted to form ring-banded spherulites. The analysis of isothermal crystallization kinetics has shown that the PLLA homopolymer accorded with the Avrami equation. But the PLLA block of the diblock copolymers deviated from the Avrami equation, which resulted from increasing of the crystallization rate and occurring of the second crystallization process. The equilibrium melting temperature (T,,) of the PLLA block fell with its molecular weight decreasing. The conditions to obtain more regular ring-banded spherulites were below: the sample was the PLLA block of LA(5) EG(5); the crystallization temperature was about from 95 degrees C to 100 degrees C, which almost corresponded to regime II.
Resumo:
The purpose of the present work is to investigate the compositional difference of polypropylene-polyethylene block copolymers (PP-b-PE) manufactured industrially by the process of degradation and hydrogenation, respectively. Each of the PP-b-PE copolymers was fractionated into three fractions with heptane and chloroform. The compositions of the three fractions were characterized by C-13 nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectroscopy, as well as differential scanning calorimetry (DSC) and thermal fractionation. The results showed that the Chloroform-soluble fraction was amorphous ethylene-propylene rubber, and the content of the rubber in PP-b-PE manufactured by hydrogenation was less than that by degradation. The degree of crystallinity of the chloroform-insoluble fraction of the PP-b-PE manufactured by hydrogenation is higher than that of by degradation.
Resumo:
In this article, ethylene-propylene-diene-rubber (EPDM) was epoxidized with an in situ formed performic acid to prepare epoxided EPDM (eEPDM). The eEPDM together with the introduction of PP-g-AA was used to compatibilize PP/EPDM blends in a Haake mixer. FTIR results showed that the EPDM had been epoxidized. The reaction between epoxy groups in the eEPDM and carboxylic acid groups in PP-g-AA had taken place, and PP-g-EPDM copolymers were formed in situ. Torque test results showed that the actual temperature and torque values for the compatibilized blends were higher than that of the uncompatibilized blends. Scanning electron microscopy (SEM) observation showed that the dispersed phase domain size of compatibilized blends and the uncompatibilized blends were 0.5 and 1.5 mu m, respectively. The eEPDM together with the introduction of PP-g-AA could compatibilize PP/EPDM blends effectively. Notched Izod impact tests showed that the formation of PP-g-EPDM copolymer improved the impact strength and yielded a tougher PP blend.
Resumo:
Perovskite-type organic/inorganic hybrid layered compound (C6H5C2H4NH3)(2)PbI4 was synthesized. The patterning Of (C6H5C2H4NH3)(2)PbI4 thin films on silicon substrate was realized by the micromolding in capillaries (MIMIC) process, a kind of soft lithography. Bright green luminescent stripes with different widths (50, 15, 0.8 mum) have been obtained. The structure and optical properties Of (C6H5C2H4NH3)(2)PbI4 films were characterized by X-ray diffraction (XRD), UV/Vis absorption and photoluminescence excitation and emission spectra, respectively. It is shown that the organic-inorganic layered (C6H5C2H4NH3)(2)PbI4 film was c-axis oriented, paralleling to the substrate plane. Green exciton emission at 525 nm was observed in the film, and the explanations for it were given.
Resumo:
Silicate oxyapatite La-9.33 (SiO6)(4)O-2:A (A = Eu3+, Tb3+ and/or Ce3+) phosphor films and their patterning were fabricated by a sol-gel process combined with soft lithography. X-ray diffraction (XRD), Fourier transform infrared spectroscopy, atomic force microscopy, optical microscopy and photoluminescence spectra, as well as lifetimes, were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 800degreesC and the crystallinity increased with the increase in annealing temperatures. Transparent nonpatterned phosphor films were uniform and crack-free, which mainly consisted of rodlike grains with a size between 150 and 210 nm. Patterned thin films with different bandwidths (20, 50 mum) were obtained by the micromoulding in capillaries technique. The doped rare earth ions (Eu3+, Tb3+ and Ce3+) showed their characteristic emission in crystalline La-9.33(SiO6)(4)O-2 phosphor films, i.e. Eu3+ D-5(0)-F-7(J) (J = 0, 1, 2, 3, 4), Tb3+ D-5(3,4)-F-7(J) (J = 3, 4, 5, 6) and Ce3+ 5d (D-2)-4f (F-2(2/5), F-2(2/7)) emissions, respectively. Both the lifetimes and PL intensity of the Eu3+, Tb3+ ions increased with increasing annealing temperature from 800 to 1100 degreesC, and the optimum concentrations for Eu3+, Tb3+ were determined to be 9 and 7 mol% of La3+ in La-9.33(SiO6)(4)O-2 films, respectively. An energy transfer from Ce3+ to Tb3+ was observed in the La-9.33(SiO6)(4)O-2:Ce, Tb phosphor films, and the energy transfer efficiency was estimated as a function of Tb3+ concentration.
Resumo:
Nanocrystalline Y2O3:Eu3+ phosphor films and their patterning were fabricated by a Pechini sol-gel process combined with a soft lithography. X-ray diffraction (XRD), thermogravimetric and differential thermal analysis (TG-DTA), atomic force microscopy (AFM), optical microscopy, UV/vis transmission and photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 500 degreesC and the crystallinity increased with the elevation of annealing temperatures. Uniform and crack free non-patterned phosphor films were obtained, which mainly consisted of grains with an average size of 70 nm. Using micro-molding in capillaries technique, we obtained homogeneous and defects-free patterned gel and crystalline phosphor films with different stripe widths (5, 10, 20 and 50 mum). Significant shrinkage (50%) was observed in the patterned films during the heat treatment process. The doped Eu3+ showed its characteristic emission in crystalline Y2O3 phosphor films due to an efficient energy transfer from Y2O3 host to them. Both the lifetimes and PL intensity of the Eu3+ increased with increasing the annealing temperature from 500 to 900 degreesC, and the optimum concentrations for Eu3+ were determined to be 5 mol%.
Resumo:
Nanocrystalline Gd2O3:A (A = Eu3+, Dy3+, Sm3+, Er3+) phosphor films and their patterning were fabricated by a Pechini sol-gel process combined with a soft lithography. X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and optical microscopy, UV/vis transmission and photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 500 degreesC and that the crystallinity increased with the elevation of annealing temperatures. Uniform and crack free non-patterned phosphor films were obtained by optimizing the composition of the coating sol, which mainly consisted of grains with an average size of 70 nm and a thickness of 550 nm. Using micro-molding in capillaries technique, we obtained homogeneous and defects-free patterned gel and crystalline phosphor films with different stripe widths (5, 10, 20 and 50 mum). Significant shrinkage (50%) was observed in the patterned films during the heat treatment process. The doped rare earth ions (A) showed their characteristic emission in crystalline Gd2O3 phosphor films due to an efficient energy transfer from Gd2O3 host to them. Both the lifetimes and PL intensity of the rare earth ions increased with increasing the annealing temperature from 500 to 900 degreesC, and the optimum concentrations for Eu3+, Dy3+, sm(3+), Er3+ were determined to be 5, 0.25, 1 and 1.5 mol% of Gd3+ in Gd2O3 films, respectively.