261 resultados para yellow birch
Resumo:
ZnO and ZnO: Zn powder phosphors were prepared by the polyol-method followed by annealing in air and reducing gas, respectively. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), X-ray photoelectron spectra (XPS), electron paramagnetic resonance (EPR), and photoluminescence (PL) and cathodoluminescence ( CL) spectra, respectively. The results indicate that all samples are in agreement with the hexagonal structure of the ZnO phase and the particle sizes are in the range of 1-2 mu m. The PL and CL spectra of ZnO powders annealed at 950 degrees C in air consist of a weak ultraviolet emission band ( similar to 390 nm) and a broad emission band centered at about 527 nm, exhibiting yellow emission color to the naked eyes. When the sample was reduced at the temperatures from 500 to 1050 degrees C, the yellow emission decreased gradually and disappeared completely at 800 degrees C, whereas the ultraviolet emission band became the strongest. Above this temperature, the green emission ( similar to 500 nm) appeared and increased with increasing of reducing temperatures.
Resumo:
A novel diamine, 3,3'-bis(N-aminophthalimide) (BAPI), was prepared from 3,3'-bis(N-phenylphthalimide). Its structure was determined via IR, H-1 NMR, N-15 NMR, elemental analysis, and single-crystal X-ray diffraction analysis. A series of homo- and copolyimides were synthesized by a conventional one-step method in p-chlorophenol. The characteristic IR absorption bands of hydrazine-based imide groups were near 1780, 1750, 1350, 1100, and 730 cm(-1). The polymers showed good solubility in polar aprotic solvents and phenols at room temperature. The temperatures of 5% weight loss (T-5%) of the polyimides ranged from 495 to 530 degrees C in air. DMTA analyses indicated that the glass-transition temperatures (Tgs) of the polyimides were in the range 371-432 degrees C. These polymers had cutoff wavelengths between 350 and 400 nm. The polyimide films of 6FDA/BAPI and 4,4'-HQPDA/BAPI were colorless; other films were pale yellow or yellow.
Resumo:
Three new iridium (III) complexes with two cyclometalated (CN)-N-boolean AND ligands (imidazole, oxazole and thiazole-based, respectively) and one acetylacetone (acac) ancillary ligand have been synthesized and fully characterized. The structure of the thiazole-based complex has been determined by single crystal X-ray diffraction analysis. The Ir center was located in a distorted octahedral environment by three chelating ligands with the N-N in the trans and C-C in the cis configuration. By changing the hetero-atom of (CN)-N-boolean AND ligands the order S, O and N, a marked and systematic hypsochromic shift of the maximum emission peak of the complexes was realized. The imidazole-based complex emits at a wavelength of 500 nm, which is in the blue to green region. The tuning of emission wavelengths is consistent with the variation of the energy gap estimated front electrochemistry results. An electroluminescent device using the thiazole-based complex as a dopant in the emitting layer has been fabricated. A highly efficient yellow emission with a maximum luminous efficiency of 9.8 cd/A at a current density of 24.2 mA/cm(2) and a maximum brightness of 7985 cd/m(2) at 19.6 V has been achieved.
Resumo:
(YSiWO8)-Si-2:Dy3+ phosphors were prepared through a sol-gel process. XRD and photoluminespectra were used to characterize the resulting phosphors. The results indicated that the phosphors crystallized completely at 1000 degrees C. In Y2SiWO8:Dy3+ phosphors, the Dy3+ showed its characteristic yellow emission at 483nm (F-4(9/2)-H-6(5/2)) and 575nm (F-4(9/2)-H-6(13/2)) upon excitation into 275nm.
Resumo:
A series of new PPV oligomers containing 8-substituted quinoline, 2,2'-(arylenedivinylene) bis-8-quinoline derivatives, were designed and synthesized via a Knoevenagel condensation reaction of quinaldine, 8-hydroxy-or 8-methoxy-quinaldine with aromatic dialdehydes. These PPV oligomers were characterized by H-1 and C-13-NMR, X-ray diffraction, elemental analysis, UV-visible and fluorescence spectroscopies. The X-ray diffraction investigation showed that there are intermolecular pi...pi interactions in the solid state in 1 and 3. The optical and photoluminescent properties study demonstrated that the emission color of the resulting materials varies from blue to yellow and is dependent on the substituents (pi-donor and pi-acceptor groups) on both sides of the conjugated molecules and the aromatic core in the middle of the conjugated backbones. The electroluminescent devices using compounds 1-4 as the emitters and electron-transporting layers were fabricated with the structure ITO/NPB/emitter/LiF/Al. The best device performance with the maximum brightness of 5530 cd m(-2) and the luminous efficiency of 2.4 cd A(-1) is achieved by using compound 4, with intramolecular charge transfer character, as the emitter; these values represent a more than 5-fold improvement in brightness and efficiency compared to compound 3 without methoxy groups on the phenyl rings.
Resumo:
In this paper for the first time the compounds Y0.5-xLi1.5VO4:(Dy3+, Eu3+),(YLV:Dy,Eu) (0.01