294 resultados para salt reduction
Resumo:
An electrode modified with a polybasic lanthanide heteropoly tungstate/molybdate complex K10H3[Nd(SiMo7W4O39)(2)] entrapped into polypyrrole (PPy) film, denoted as Nd(SiMo7W4)(2)-PPy, exhibits three couples of two-electron redox waves in pH 1-5 buffer solutions. The redox waves are surface-controlled at lower scan rates and diffusion-controlled at higher scan rates. The effects of pH on the electrochemical behavior of Nd(SiMo7W4)(2) in PPy film were investigated in detail and compared with that of Nd(SiMo7W4)(2) in aqueous solution. The various charge states of PPy during its redox process have peculiar effects on the relationship between pH and formal potentials of Nd(SiMo7W4)(2)-PPy at different acidities. The Nd(SiMo7W4)(2)-PPy cme can remarkably catalyze the electrochemical reduction of bromate with good stability. (C) 1997 Elsevier Science Ltd.
Resumo:
Oxidation-reduction properties of horseradish peroxidase (HRP) have been investigated by using direct electrochemical methods. Two successive separated distinct one-electron processes of HRP were obtained and the related physiological processes were described. The monolayer coverage of HRP at the electrode surface is about 50 pmol/cm(2). UV-Vis spectrophotometry and stable amperometry prove that the enzyme electrode possesses catalytic activity for H2O2 in the absence of a mediator and it might offer an opportunity to build the third generation of biosensors for analytes, such as H2O2, glucose and cholesterol etc. (C) 1997 Elsevier Science S.A.
Resumo:
It was found that cyanocobinamide (CN-Cbi) can be reduced at about -0.50V. The reduction process has an EC mechanism, i.e. the electrochemical reduction of CN-Cbi is accompanied by a decyanation of CN-Cbi. The electrochemical characteristics of CN-Cbi and vitamin B-12 were compared.
Resumo:
It was found that vitamin B-12 could be strongly adsorpted on the anodized glassy carbon electrode to form a vitamin Thy-modified glassy carbon electrode. The modified electrode is stable in a wide pH range. The electrochemical characteristics of the modified electrode were studied in details. In addition, it was found that the reduction of oxygen could be catalyzed by the modified electrode to form H2O2. An EC mechanism was suggested for the process, and the follow up chemical reaction might he the rate determined step.
Resumo:
Active carbon supported copper oxides were used in NO reduction. The conversions of NO reduction depends strongly on surface oxygen-containing groups on the active carbons, among them the carboxyls and lactones favored remarkably the NO reduction. However, hydrochloric acid treatment led to the decomposition of the carboxyls and lactones on C2 and C3, decreasing their reactivities for NO reduction. Concentrated HNO3 treatment of active carbon produced higher conversions of NO reduction at relatively low temperatures due to the marked increase in the amounts of the carboxyls and lactones.
Resumo:
The electrochemical behavior of Dawson-type P2W18O626- adsorbed on a glassy carbon electrode and doped in a polypyrrole film electrode was described. These modified electrodes all display catalytic activity for nitrite reduction, either in acid solutions or in pH > 4.0 solutions.
Resumo:
A new class of rubbery 'polymer-in-salt' electrolytes for application in solid-state lithium batteries has been explored by differential scanning calorimetry and a.c. impedance analysis. Simple phase diagrams of LiN(CF3SO2)(2)+LiClO4 and LiC(CF3SO2)(3)+LiN(CF3SO2)(2) have been drawn, which are very important to determine polymer-in-salt electrolyte materials. The conductivities obtained by a.c. impedance measurement are smaller for the electrolyte that contains acetate LiOAc salt than for the electrolyte without this salt.
Resumo:
C-60 films, prepared by solution casting, were studied by means of in situ probe beam deflection (PBD) combined with cyclic voltammetry (CV). PBD is a powerful technique for investigation of phenomena at the electrode/electrolyte interface in acetonitrile with quaternary ammonium and alkali metal salts as supporting electrolytes. In tetra-n-butylammonium (TBA(+)) salt solution, a stable CV can be obtained during the first two reduction/reoxidation waves. On reduction, injection of cations to maintain charge balance and dissolution of small amount of C-60(-) (TEA(+)) and/or C-60(2-) (TBA(+))(2) are detected. During the reoxidation process ejection of cations and injection of anions occur simultaneously, especially for the second reoxidation wave. In the case where TBABr is the supporting electrolyte, the accompanied behavior is more complicated than in TBABF(4), TBAClO(4), and TBAPF(6) solutions. A small pair of prewaves in CV are proposed due to oxidation/reduction of C-60 domains but not dissolution/redeposition of C-60 film. Extending the potential scan range to the third reduction wave, no apparent corresponding reoxidation wave is related to the third reduction wave, the electroactivity of the film disappears rapidly and dissolution of C-60 film is observed. In tetraethylammonium (TEA(+)) and NAClO(4) solutions, the electrochemistry of the C-60 films is unstable, and potential scans lead to dissolution of flaking of the film.
Resumo:
An electrolysis technique for co-deposition of Ca2+ and Na+ at the liquid lead cathode was put forward. The experiment was carried out at an electrolysis temperature below 650 degrees C and had a current efficiency of 98%, which are respectively 100 similar to 300 degrees C lower and 15% similar to 30% higher than those reported both at home and abroad.
Resumo:
The mechanism of oxygen reduction on polycobaltprotoporphyrin IX dimethyl ester (PolyCoPP) film has been studied by using the rotating ring(Au)-disk(pyrolytic graphite, PG) electrode (RRDE) technique. The PolyCoPP/PG electrode promotes the oxygen reduction via two-electron process which produces peroxide as a main product in O-2-saturated 0.1 mol.dm(-3) NaOH. Once HO2- has been formed, no further reduction to OH- takes place at the disk. When the disk potential shifts to more negative, either the direct reduction of O-2 to OH- or the further reduction of HO2- to OH- occurs.
Resumo:
The electrochemical reduction behavior of bilirubin (BR) at platinum electrode in DMF was investigated by cyclic voltammetry, in situ electron spin resonance spectroscopy and in situ rapid scanning thin layer spectroelectrochemistry. Experimental results revealed that the reduction of BR firstly undergoes an ECE process: GRAPHICS The generated (BR)(2)(3-). can be re-oxidized to BR and then to purpurin (Pu) by a series of oxidation processes: GRAPHICS However, the re-reduction reactions of Pu are not the reverse processes. The different reduction mechanisms are discussed in detail.
Resumo:
A molybdophosphate anion modified electrode has been prepared in 2 M sulfuric acid solution containing PMo12O403- by electrochemical cycling scan or simple adsorption on a glassy carbon electrode anodized before modification. The film electrode obtained is very stable upon potential cycling in acid solution. The catalytic effect of the film for reduction of bromate was investigated in detail.
Resumo:
A comb-shaped polymer (BM350) with oligo-oxyethylene side chains of the type -O(CH2CH2O)(7)CH3 was prepared from methyl vinyl ether/maleic anhydride copolymer. Homogeneous amorphous polymer electrolyte complexes were made from the comb polymer and LICF(3)SO(3) by solvent casting from acetone, and their conductivities were measured as a function of temperature and salt concentration. Maximum conductivity close to 5.08 X 10(-5) Scm(-1) was obtained at room temperature and at a [Li]/[EO] ratio of about 0.12. The conductivity which displayed non-Arrhenius behaviour was analyzed using the Vogel-Tammann-Fulcher equation and interpreted on the basis of the configurational entropy model. The results of mid-IR showed that the coordination of Li+ to side chains made the C-O-C band become broader and shift slightly. X-ray photoelectron spectroscopy analysis indicated that the oxygen atoms in the two situations could coordinate to Li+ and this coordination resulted in the reduction of the electron orbit binding energy of F and S.
Resumo:
Reduction of hydrogen peroxide at a glassy carbon (GC) electrode modified with sigma-bonded pyrrole iron(III) octaethylporphyrin complex, (OEP)Fe(Pyr), was studied by cyclic voltammetry and a rotating disk electrode. In 0.1N NaOH solution, it is shown that such an (OEP)Fe(Pyr)/GC electrode has a significant catalytic activity towards hydrogen peroxide reduction (E(D) = -0.80 V, k = 0.066 cm s(-1)); however, the electrode stability is low. The deactivation is observed when the reaction charge (Q) is passing through the (OEP)Fe(Pyr)/GC disk electrode. A linear rotation scan method is applied to study the kinetic process by determining the disk electrochemical response (i(D)) to rotation rate (omega) at a definite disk potential (E(D)). Considering that the number of adsorbed electroreduced catalyst molecules (Red) varies according to the disk potential, a factor theta(= Gamma(Red)/(Gamma(Red) + Gamma(Ox))) is introduced to describe the electrode surface area fraction for electroreduced species. The obtained Koutecky-Levich equation is applicable whatever the potential is.