263 resultados para pH cycling
Resumo:
流域水环境是流域一切生态过程的基础,也是保障水资源发挥各项服务功能的必要条件。随着社会经济的发展,河流的自然性质和作用过程受到流域内不断加强的人文活动的强烈冲击。其中,水利大坝对河流的拦截调蓄可以算得上是对河流及流域生态系统的影响最为显著和重要。在河流上修筑水坝后,水库成为流域(河流)景观格局中重要的组成部分。目前对河流“水库效应”的研究主要集中在由水坝拦截引起的河流水文情势改变、泥砂淤积、地貌侵蚀以及鱼类迴游、水坝建设对生源要素的拦截、水库温室气体等方面,且大多数研究只针对单个水库或几个位于不同流域的独立水库,而对同一流域梯级开发形成的河流—水库体系中水环境演化的过程缺乏深入的了解,对单一水库中碳循环的生物地球化学作用研究不够。 碳是生命的核心元素,所有其它重要元素的生物循环过程都与碳密切相关。水体内生物活动与水库水环境变化之间的反馈、水体生态系统与营养元素载荷的相互作用关系以及响应过程是研究水环境变化的基础。其中,水体内部的元素循环、能量流动、CO2动力学与营养状况的关系等都是控制水环境变化的关键过程,碳作为这一切活动的核心元素,对它的研究对认识水环境变化、水生态过程、元素循环以及它们的相互作用具有重要的指示意义。 因此,本研究中选取中国西南喀斯特山区典型的梯级水库作为研究对象,以碳循环为研究主线,于2006年4月、7月、10月和2007年1月对乌江中上游干流已进行梯级开发的六个水库的入库水体、库区水体及出库水体进行一个水文年的采样,对溶解无机碳(DIC)、溶解有机碳(DOC)、颗粒有机碳(POC)、DIC同位素组成(δ13CDIC)和POC同位素组成(δ13CPOC)以及TN、TP、chla、和藻类种类和数量进行了分析,深入探讨了水电梯级开发对河流碳循环的影响,获得以下几点重要认识。这些认识将为我们理解和评价梯级开发对河流水环境的影响提供重要的科学依据: 1、河水化学的水库效应:河流梯级筑坝拦截使得水库水体基本水化学特征发生变化。研究区水化学类型主要为重碳酸盐-碳酸盐Ca组Ⅱ型水。河流经水坝拦截后,库区水位抬升,水库水化学性质表现出随季节变化的特征。水库中水体在春季开始出现水温的分层结构,这种状况持续到夏季和秋季,有效地限制了上下层水体的垂直交换。河流水体经水库作用后,出库水体水温、pH值均降低。除冬季外,各水库出库水体水温均低于入库水体和库区表层水体。水体水化学组成因此出现较为明显的上下差异。Na+、K+、Mg2+、Cl-、SO42-经水库作用而部分被吸收或滞留;而Ca2+、HCO3-和NO3-经水库作用后增加。 2、生物作用的水库效应:研究区水库中,洪家渡水库、引子渡水库和索风营以绿藻为主,处于中营养状态;普定水库和东风水库以硅藻为主,处于轻度富营养状态;乌江渡水库以蓝藻为主,处于富营养状态。总体上表现为水库库龄与水库营养程度正相关,建库时间越长,水库营养程度越高。 3、碳循环的水库效应:水库作用过程使得出库水体中DIC浓度增加,DOC和POC浓度减少。梯级水库作用使得乌江中上游河流体系DIC输出量增加22.18%,而DOC和POC输出量则分别减少18.19%和70.09%。研究区梯级水库是河流—水库体系DIC的“源”、DOC和POC的“汇”。经梯级水库作用后,乌江中上游河流—水库体系经乌江渡水库每年向下游河流输送的DIC(以C计)、DOC、POC通量分别为263.64 kt、12.40 kt、13.86 kt。 总体上,研究区梯级水库是下游河流DIC的“源”,DOC、POC的“汇”。在水体垂直剖面上,DIC浓度随水深的增加而增加,而DOC、POC浓度则随着水深的增加而减小,但由于底部沉积物的再悬浮作用,使得部分剖面中底部水体中DOC、POC浓度增加。溶解无机碳同位素组成(δ13CDIC)对水库作用过程有良好的响应,水库出库水体中δ13CDIC值比入库水体和库区表层水体均偏负,在库区坝前垂直剖面上,δ13CDIC值随着水深的增加而偏负,δ13CPOC值变化规律性较差。从研究结果来看,δ13CDIC值可用于对水库作用过程对水环境的影响进行示踪。 4、水库的温室气体释放:总体上,入库水体中溶解CO2分压(pCO2)低于出库水体。河流经水库截留后,水体中pCO2增高,向大气中释放的CO2增加,成为大气CO2的“源”。在水库内部垂直剖面上,水体中CO2分压随着深度的增加而增大。由于水库为下层泄水,使得出库水体中CO2分压显著高于大气分压,CO2释放通量平均为水库库区表层水体的6.51倍。由此可见,在研究水库作用过程对大气中温室气体的影响时,水库泄水的CO2释放问题需引起极大的重视。
Resumo:
Effect of redox cycling on a Ni-YSZ anode prepared from 50 wt.% NiO and 50 wt.% YSZ was investigated by using temperature-programmed reduction (TPR), XRD and SEM techniques. XRD results showed that NiO was formed during re-oxidation. Both the XRD and TPR results depicted that the conversion of nickel to NiO depended on the re-oxidation temperature. The oxidation of Ni to NiO occurred quickly in the initial several minutes and then reached a quasi equilibrium. The TPR profiles tracing the redox cycling showed that it brought continuous changes in the NiO micro-structure at 800 degrees C, whereas at 600 degrees C it had only little effects on the reduction of NiO. Re-oxidation resulted in the formation of spongy aggregates of NiO crystallites. Redox cycling at 800 degrees C led to a continuous decrease in the primary crystallite size of NiO and a high dispersion of the Ni particles. A continuous expansion of the slice sample was observed in both of the oxidized and reduced states during the redox cycling at 800 degrees C, whereas this process did not occur during the redox cycling at 600 degrees C. (c) 2005 Elsevier B.V All rights reserved.