407 resultados para modified atmosphere packaging
Resumo:
The target DNA was immobilized successfully on gold colloid particles associated with a cysteamine monolayer on gold electrode surface. Self-assembly of colloidal An onto a cysteamine modified gold electrode can enlarge the electrode surface area and enhance greatly the amount of immobilized single stranded DNA (ssDNA). The electrontransfer processes of [Fe(CN)(6)](4)-/[Fe(CN)(6)](3-) on the gold surface were blocked due to the procedures of the target DNA immobilization, which was investigated by impedance spectroscopy. Then single stranded target DNA immobilized on the gold electrode hybridized with the silver nanoparticle-oligonucleotide DNA probe, followed by the release of the silver metal atoms anchored on the hybrids by oxidative metal dissolution, and the indirect determination of the released solubilized Ag-1 ions by anodic stripping voltammetry (ASV) at a carbon fiber microelectrode. The results show that this method has good correlation for DNA detection in the range of 10-800 pmol/1 and allows the detection level as low as 5 pmol/1 of the target oligonucleotides.
Resumo:
Organically modified silica xerogels (OMSX) and Eu3+ (Tb3+)-doped OMSX were prepared by the reaction of (3-aminopropyl) triethoxysilane (APS) with 3-isocyanatepropyltriethoxysilane (ICPTES) followed by the subsequent hydrolysis and condensation in the presence of Eu3+ (Tb3+) via sol-gel method, which were characterized by FT-IR, XRD, fluorescence excitation and emission spectra. The as-formed OMSX shows a strong blue emission with the maximum excitation and emission wavelength at 351 and 420 nm, respectively. Due to the spectral overlap between the emission band of OMSX and f-f absorption lines of Eu3+ and Tb3+ in the UV-blue region, an energy transfer was observed from OMSX host to Eu3+ and Tb3+ in OMSX/Eu3+ and OMSX/Tb3+, respectively. Excitation at 350-360 nm resulted in a very weak emission around 420 nm from OMSX host and strong emission of Eu3+ and Tb3+ in OMSX/Eu3+ and OMSX/Tb3+, respectively. The emission spectra of Eu3+ and Tb3+ consist of D-5(0)-F-7(J) (J = 0, 1, 2, 3, 4) and D-5(4)-F-7(J) (J = 6, 5, 4, 3), respectively. Furthermore, the predicted structure of OMSX/Eu3+ and OMSX/Tb3+ is presented.
Resumo:
Alternate layer-by-layer (L-by-L) polyion adsorption onto gold electrodes coated with chemisorbed cysteamine gave stable, electroactive multilayer films containing calf thymus double stranded DNA (CT ds-DNA) and myoglobin (Mb). Direct, quasi-reversible electron exchange between gold electrodes and proteins involved the Mb heme Fe2+/Fe3+ redox couple. The formation of L-by-L (DNA/Mb), films was characterized by both in situ surface plasmon resonance (SPR) monitoring and cyclic voltammetry (CV). The effective thickness of DNA and Mb monolayers in the (DNA/Mb)l bilayer were 1.0 +/- 0.1 and 2.5 +/- 0.1 mn, corresponding to the surface coverage of similar to65% and similar to89% of its full packed monolayer, respectively. A linear increase of film thickness with increasing number of layers was confirmed by SPR characterizations. At pH 5.5, the electroactive Mb in films are those closest to the electrode surface; additional protein layers did not communicate with the electrode. CV studies showed that electrical communication might occur through hopping conduction via the electrode/base pair/Mb channel, thanks to the DNA-Mb interaction. After the uptake of Zn2+, a special electrochemical behavior, where MbFe(2+) acts as a DNA-binding reduction catalyst in the Zn2+-DNA/Mb assembly, takes place.
Resumo:
Three novel polyoxometalate derivatives decorated by transition metal complexes have been hydrothermally synthesized. Compound 1 consists of [(PMo6Mo2V8O44)-Mo-VI-V-V-O-IV{CO (2,2'-bipy)(2)(H2O)}(4)](3+) polyoxocations and [(PMo4Mo4V8O44)-Mo-IV-V-V-O-IV{Co(2,2'-bipy)(2)(H2O)}(2)](3-) polyoxoanions, which are both built on mixed-metal tetracapped [PMo8V8O44] subunits covalently bonded to four or two {Co(2,2'-bpy)(2)(H2O)}(2+), clusters via terminal oxo groups of the capping V atoms. Compound 2 is built on [(PMo8V6O42)-V-VI-O-IV{Cu-I(phen)}(2)](5-) clusters constructed from mixed-metal bicapped [(PMo8V6O42)-V-VI-O-IV](7-) subunits covalently bonded to two {Cu(phen)}(+) fragments in the similar way to 1. The structure of 3 is composed of [(PMo9Mo3O40)-Mo-VI-O-V](6-) units capped by two divalent Ni atoms via four bridging oxo groups.
Resumo:
A new type of organically modified sol-gel/chitosan composite material was developed and used for the construction of glucose biosensor. This material provided good biocompatibility and the stabilizing microenvironment around the enzyme. Ferrocene was immobilized on the surface of glassy carbon electrode as a mediator. The characteristics of the biosensor were studied by cyclic voltammetry and chronoamperometry. The effects of enzyme-loading, buffer pH, applied potential and several interferences on the response of the enzyme electrode were investigated. The simple and low-cost glucose biosensor exhibited high sensitivity and good stability.
Resumo:
Compounds of Sr4Al14O15: Eu were prepared in air atmosphere by high temperature solid state reaction. The reduction of Eu3+--> Eu2+ was firstly observed in the aluminate phosphor of Sr4Al14O25: Eu synthesized in air condition. This made aluminate a new family and Sr4Al14O25 a new member of compounds in which Eu3+ ion could be reduced to Eu2+ form when fired in air atmosphere. The reduction of Eu3+ --> Eu2+ in Sr4Al14O25: Eu was explained by means of a charge compensation model. Experiments based on the model were designed and carried out, and the results supported this model.
Resumo:
A poly(thionine) modified screen-printed carbon electrode has been prepared by an electrooxidative polymerization of thionine in neutral phosphate buffer. The modified electrodes are found to give stable and reproducible electrocatlytic responses to NADH and exhibit good stability. Several techniques, including cyclic voltammetry, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), have been employed to characterize the poly(thionine) film. Further, the modified screen-printed carbon electrode was found to be promising as an amperometric detector for the flow injection analysis (FIA) of NADH, typically with a dynamic range of 5-100 muM.
Resumo:
Microperoxidase-11 (MP-11) was immobilized on the surface of a silanized glass carbon electrode by means of the covalent bond with glutaraldehyde. The measurements of cyclic voltammetry demonstrated that the formal redox potential of immobilized MP-11 was -170 mV. which is significantly more positive than that of MP-11 in a solution or immobilized on the surface of electrodes prepared with other methods. This MP-11 modified electrode showed a good electrocatalytic activity and stability for the reduction of oxygen and hydrogen peroxide.
Resumo:
A stable electroactive thin film of cobalt hexacyanoferrate (CoHCF) was electrochemically deposited on the surface of a glassy carbon (GC) electrode with a new and simple method. The cyclic voltammograms of the CoHCF Film modified GC (CoHCF/GC) electrode prepared by this method exhibit two pairs of well-defined redox peaks, at scan rates up to 200 mV s(-1). The advantage of this method is that it is easy to manipulate and to control the surface coverage of CoHCF on the electrode surface. The modified electrode shows good electrocatalytic activity towards the electrochemical reaction of dopamine (DA) in a 0.1 mol dm (3) KNO3 + phosphate buffer solution (pH 7.0). The rate constant of the electrocatalytic oxidation of DA at the CoHCF/GC electrode is determined by employing rotating disk electrode measurements.
Resumo:
A toluidine blue modified gold electrode was constructed using self-assembled silica gel technique. Firstly, toluidine blue was encapsulated within 3D network of silica self-assembly monolayer on the surface of gold electrode. Secondly, another layer of silica sol was further assembled to protect from leaching of mediator or possible contamination. The electrochemical characteristics of toluidine blue immobilized within self-assembled silica gel were studied in detail. The modified electrode was applied for electrochemical oxidation of NADH with satisfactory results.
Resumo:
The combination of in situ surface plasmon resonance (SPR) with electrochemistry was used to investigate the electrochemical doping/dedoping processes of anions on a polyaniline (PAn)-modified electrode. Electrochemical SPR characteristics of the PAn film before and after doping/dedoping were revealed. The redox transformation between the insulating leucoemeraldine, and the conductive emeraldine, corresponding to the doping/dedoping of anion, can lead to very distinct changes in both the resonance minimum angle and the shape of SPR curve. This is ascribed to the swelling/shrinking effect, and the change of the PAn film in the imaginary part of the dielectric constant resulted from the transition of the film conductivity. In situ recording the time evolution of reflectance change at a fixed angle permits the continuous monitoring of the kinetic processes of doping/dedoping anions. The size and the charge of anions, the film thickness, as well as the concentration of anions are shown to strongly influence the rate of ingress/egress of anions. The time differential of SPR kinetic curves can be well applied in the detecting electroinactive anion by flow injection analysis. The approach has higher sensitivity and reproducibility compared with other kinetic measurements, such as those obtained by amperometry.
Resumo:
The three scaling parameters described in Sanchez-Lacombe lattice fluid theory (SLLFT), T*, P* and rho* of pure polystyrene (PS), pure poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and their mixtures are obtained by fitting corresponding experimental pressure volume-temperature data with equation-of-state of SLLFT. A modified combining rule in SLLFT used to match the volume per mer, v* of the PS/PPO mixtures was advanced and the enthalpy of mixing and Flory-Huggins (FH) interaction parameter were calculated using the new rule. It is found that the difference between the new rule and the old one presented by Sanchez and Lacombe is quite small in the calculation of the enthalpy of mixing and FH interaction parameter and the effect of volume-combining rule on the calculation of thermodynamic properties is much smaller than that of energy-combining rule. But the relative value of interaction parameter changes much due to the new volume-based combining rule. This effect can affect the position of phase diagram very much, which is reported elsewhere [Macromolecules 34 (2001) 6291]
Resumo:
Hydroquinone was chosen as an electroactive probe to study the beta-cyclodextrin (beta-CD) modified poly(N-acetylaniline) (PNAANI) electrode. The beta-CD modified PNAANI electrode was prepared by electrooxidation of the PNAANI electrode in a beta-CD/DMSO solution. The electrochemical properties of the beta-CD inclusion complex of hydroquinone on the PNAANI electrode and hydroquinone on the beta-CD modified PNAANI electrode were studied. In the cyclic voltammogram of hydroquinone at the beta-CD/PNAANI electrode, DeltaE(p) of the peaks is sharpening and the area of the peaks is increasing, which can be due to the inclusion of hydroquinone into the cavity of beta-CD immobilized at the electrode surface. The beta-CD/PNAANI film was characterized by X-ray photoelectron spectroscopy and H-1 NMR. The mechanism for beta-CD incorporation into the polymer film was also proposed.