261 resultados para metallic property
Resumo:
Kinesins are common in a variety of eukaryotic cells with diverse functions. A cDNA encoding a member of the Kinesin-14B subfamily is obtained using X-RACE technology and named AtKP1 (for Arabidopsis kinesin protein 1). This cDNA has a maximum open reading frame of 3.3 kb encoding a polypeptide of 1087 aa. Protein domain analysis shows that AtKP1 contains the motor domain and the calponin homology domain in the central and amino-terminal regions, respectively. The carboxyl-terminal region with 202 aa residues is diverse from other known kinesins. Northern blot analysis shows that AtKP1 is widely expressed at a higher level in seedlings than in mature plants. 2808 bp of the AtKP1 promoter region is cloned and fused to GUS. GUS expression driven by the AtKP1 promoter region shows that AtKP1 is mainly expressed in vasculature of young organs and young leaf trichomes, indicating that AtKP1 may participate in the differentiation or development of Arabidopsis thaliana vascular bundles and trichomes. A truncated AtKP1 protein containing the putative motor domain is expressed in E. coli and affinity-purified. In vitro characterizations indicate that the polypeptide has nucleotide-dependent microtubule-binding ability and microtubule-stimulated ATPase activity.
Resumo:
Interaction of traditional Chinese Herb Rhizoma Chuanxiong and protein was studied by microdialysis coupled with high performance liquid chromatography. Compounds in Rhizoma Chuanxiong, such as ferulic acid, senkyunolide A and 3-butylphthalide, were identified by HPLC, HPLC-MS and UV-vis. Microdialysis recoveries and binding degrees of compounds in Rhizoma Chuanxiong with human serum albumin (HSA) and other human plasma protein were determined: recoveries of microdialysis sampling ranged from 36.7 to 98.4% with R.S.D. below 3.1%; while binding to HSA ranged from 0 to 91.5% (0.3 mM HSA) and from 0 to 93.5% (0.6 mM HSA), respectively. Compared with HSA, most of compounds bound to human blood serum more extensively and the results showed that binding of these compounds in Rhizoma Chuanxiong was influenced by pH. Two compounds were found to bind to HSA and human blood serum. their binding degrees were consistent with ferulic acid and 3-butylphthalide, the active compounds in Rhizoma Chuanoxiong. (c) 2005 Elsevier B.V. All rights reserved.