379 resultados para glycol methacrylate
Resumo:
A polymer pair composed of poly( N-isopropylacrylamide-co-2-hydroxyethyl methacrylate terminated oligo( L-lactide)) ( poly( NIPAAm-co-HEMAOLLA)) graft random copolymer and poly( D-lactide) ( PDLA) homopolymer was self-assembled into micelles with a diameter around 100 nm through the stereocomplexation between the OLLA branches of the graft copolymer and the PDLA homopolymer. The specific intermolecular stereocomplexation was considered as the powerful ordered aggregation force in the micelle cores. The shell's component of poly( NIPAAm-co-HEMA) and its thermosensitivity were proved by H-1 nuclear magnetic resonance ( NMR) and dynamic light scattering ( DLS), respectively. The incorporation of PDLA homopolymer into the graft copolymer affected the micelle size and the critical micelle concentration ( CMC). The incorporation of even a small quantity ( 11 wt%) of PDLA into the graft copolymer micelles resulted in a great decrease of the micelle size. For the graft copolymer with low per cent grafting of 18%, the size of the corresponding micelles decreased slightly even if the PDLA content increased up to 33 wt%. For the graft copolymer with high per cent grafting of 58%, with the further increase of PDLA content, the size of the corresponding micelles at first decreased further and then began to increase. The molecular weight of the PDLA did not significantly affect the micelle size.
Resumo:
Self-assembling of novel biodegradable ABC-type triblock copolymer poly(ethylene glycol)-poly(L-lactide)-poly(L-glutamic acid) (PEG-PLLA-PLGA) is studied. In aqueous media, it self-assembles into a spherical micelle with the hydrophobic PLLA segment in the core and the two hydrophilic segments PEG and PLGA in the shell. With the lengths of PEG and PLLA blocks fixed, the diameter of the micelles depends on the length of the PLGA block and on the volume ratio of H2O/dimethylformamide (DMF) in the media. When the PLGA block is long enough, morphology of the self-assembly is pH-dependent. It assembles into the spherical micelle in aqueous media at pH 4.5 and into the connected rod at or below pH 3.2. The critical micelle concentration (cmc) of the copolymer changes accordingly with decreasing solution pH. Both aggregation states can convert to each other at the proper pH value. This reversibility is ascribed to the dissociation and neutralization of the COOH groups in the LGA residues. When the PLGA block is short compared to the PEG or PLLA block, it assembles only into the spherical micelle at various pH values.
Resumo:
A series of segmented poly (L-lactide)-polyurethanes (PLA-PU) were synthesized by a two-step method, with oligo-poly(L-lactide) (PLA) as the soft segments and the reaction product of 2,4-toluene diisocyanate(TDI) and ethylene glycol(EG) as the hard segments. The shape memory properties of PLA-PUs were examined. The processed PLA-PUs could recover almost 100% to their original shape within 10 degrees C from the lowest recovery temperature. In the recovery process, the PLA-PUs showed a maximum contracting stress of shape change in the range of 1.5-4 MPa depending on the PLA segmental length and the hard-segmental content and higher than that of poly (e-caprolactone polyurethane) (PCL-PU). Besides, the influence of deforming and fixing temperatures on shape memory properties of PLA-PU was studied in detail. They could affect not only the recovery temperature but also the maximum contracting stress. The experiments of cell incubation were used to evaluate the biocompatibility of PLA-PU. The results show that the biocompatibility of PLA-PU is comparable to that of the pure PLA. This kind of polyurethane can be used as implanted medical devices with a shape memory property.
Resumo:
A PEO-tethered layer on a PDMS (polydimethylsiloxane) cross-linked network has been prepared by a swelling-deswelling process. During swelling, the PDMS block of a PDMS-b-PEO diblock copolymer penetrates into the PDMS substrate and interacts with PDMS chains because of the van der Waals force and hydrophobic interaction between them. Upon deswelling, the PDMS block is trapped in the PDMS matrix while the PEO, as a hydrophilic block, is tethered to the surface. The PEO-tethered layer showed stability when treated in water for 16 h. The surface fraction of PEO and the wetting property of the PEO-tethered PDMS surface can be controlled by the cross linking density of the PDMS matrix. A patterned PEO-tethered layer on a PDMS network was also created by microcontact printing and water condensation figures (CFs) were used to study the patterned surface with different wetting properties.
Resumo:
New nanocomposites were prepared by melt blending poly(L-lactide) (PLLA), poly(epsilon-caprolactone) (PCL), and organically modified montmorillonite (OMMT). The obtained nanocomposites showed enhanced tensile strength, modulus and elongation at break than that of PLLA/PCL blends. The dynamic mechanical analysis showed the increasing mechanical properties with temperature dependence of nanocomposites. Wide-angle X-ray diffraction analysis and transmission electron microscopy indicated that the material formed the nanostructure. Adding OMMT improved the thermal stability and crystalline abilities of nanocomposites. The morphology was investigated by environmental scanning electron microscopy, which showed that increasing content of OMMT reduces the domain size of phase-separated particles. The specific interaction between each polymer and OMMT was characterized by the Flory-Huggins interaction parameter, B, which was determined by the equilibrium melting point depression of nanocomposites. The final values of B showed that PLLA was more compatible with OMMT than PCL.
Resumo:
Macroporous and modified macroporous poly(styrene-co-methyl methacrylate-co-divinylbenzene) particles (m-PS and mm-PS) supported Cp2ZrCl2 were prepared and applied to ethylene polymerization using methylaluminoxane (MAO) as cocatalyst. The influences of the swelling response of the support particles on the catalyst loading capabilities of the supports as well as on the activities of the supported catalysts were studied. It was shown that the Zr loadings of the supports and the activities of the supported catalysts increased with the swelling extent of the support particles. The m-PS or mm-PS supported catalysts exhibited very high activities when the support particles were well swollen, whereas those catalysts devoid of swelling treatment gave much lower activities. Investigation on the distribution of the supports in the polyethylene by TEM indicated that the swelling of the support particles allowed the fragmentation of the catalyst particles. In contrast, the fragmentation of the support particles with poor swelling was hindered during ethylene polymerization.
Resumo:
The bifunctional comonomer 4-(3-butenyl) styrene was used to synthesize crosslinked polystyrene microspheres (c-PS) with pendant butenyl groups on their surface via suspension copolymerization. Polyethylene chains were grafted onto the surface of c-PS microspheres (PS-g-PE) via ethylene copolymerizing with the pendant butenyl group on the surface of the c-PS microspheres under the catalysis of metallocene catalyst. The composition and morphology of the PS-g-PE microspheres were characterized by means of Fourier transform infrared spectroscopy, Fourier transform Raman spectroscopy, X-ray photoelectron spectroscopy, and field-emission scanning electron microscopy. It is possible to control the content of PE grafted onto the surface of c-PS microspheres by varying the polymerization time or the initial quantity of pendant butenyl group on the surface of c-PS microspheres. Investigation on the morphology and crystallization behavior of grafted PE chains showed that different surface patterns could be formed under various crystallization conditions. Moreover, the crystallization temperature of PE chains grafted on the surface of c-PS microspheres was 6 degrees C higher than that of pure PE. The c-PS microspheres decorated by PE chains had a better compatibility with PE matrix.
Resumo:
The phase behavior of a miscible PS/PVME (80/20, w/w) blend film in a confined geometry has been investigated at the annealing temperature much lower than the low critical solution temperature (LCST) of the blend. When the annealing temperature (52degreesC) is near the glass transition temperature of the blend (51.2degreesC), PVME-rich phase at the air-film surface under a microchannel forms smaller protrusion. When the annealing temperature is increased to 70degreesC, the protruding stripes, which are almost developed, are mainly composed of the mobile PVME-rich phase. These results reveal that the capillary force lead to the enrichment of PVME-rich phase at the air-polymer interface of a PDMS microchannel, that is, the capillary force lithography (CFL) can induce the phase separation of PS/PVME blend films.
Resumo:
Poly(ethylene glycol) (PEG) networks were synthesized by gamma-irradiation. The crystalline behavior of PEG was investigated by differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD). It was shown that the crystallinity of PEG is dramatically lower in the cross-linked, networks than in pure PEG. When the molecular weight of PEG in the networks decreased to 1000, it could not crystallize at all. Moreover, we also found that the melting temperature of PEG is greatly affected by the presence of a cross-linked network.
Resumo:
The cloud-point temperatures (T-c1's) of ti-ans-decahydronaphthalene (TD)/polystyrene (PS, M-w = 270 kg/mol) solutions were determined by fight scattering measurements over a range of temperatures (1-16 degreesC), pressures (100-900 bar), and compositions (4.2-21.6 vol% polymer). The system phase separates upon cooling and the T-c1 was found to increase with the rising pressure for the constant composition. In the absence of special effects this finding indicates positive excess volumes. The special attention was paid to the demixing temperatures as a function of the pressure for the different polymer solutions and the plots in the T-volume fraction plane and P-volume fraction plane. The cloud-point curves of polymer solutions under changing pressures were observed for different compositions, demonstrates that the TD/PS system exhibits UCST (phase separation upon cooling) behavior. With this data the phase diagrams under pressure were calculated applying the Sanchez-Lacombe (SL) lattice fluid theory. Furthermore, the cause of phase separation, i.e., the influence of Flory-Huggins (FH) interaction parameter under pressure was investigated.
Resumo:
Isothermal crystallization kinetics in the melting of poly(ethylene oxide) (PEO) were investigated as a function of the shear rate and crystallization temperature by optical microscopy. The radial growth rates of the spherulites are described by a kinetics equation including shearing and relaxation combined effects and the free energy for the formation of a secondary crystal nucleus. The free-energy difference between the liquid and crystalline phases increased slightly with rising shearing rates. The experimental findings showed that the influence of the relaxation of PEO, which is related to the shear-induced orientation and stretch in a PEO melt, on the rate of crystallization predominated over the influence of the shearing. This indicated that the relaxation of PEO should be more important so that the growth rates increase with shearing, but it was nearly independent of the shear rate within the measured experimental range.
Resumo:
Three fully amorphous comb-branch polymers based on poly(styrene-co-maleic anhydride) as a backbone and poly(ethylene glycol) methyl ether of different molecular weights as side chains were synthesized. SiO2 nanoparticles of various contents and the salt LiCF3SO3 were added to these comb-branch polymers to obtain nanocomposite polymer electrolytes. The thermal and transport properties of the samples have been characterized. The maximum conductivity of 2.8x10(-4) S cm(-1) is obtained at 28 degreesC. In the system the longer side chain of the comb-branch polymer electrolyte increases in ionic conductivity after the addition of nanoparticles. To account for the role of the ceramic fillers in the nanocomposite polymer electrolyte, a model based on a fully amorphous comb-branch polymer matrix in enhancing transport properties of Li+ ions is proposed.
Resumo:
We have followed the time development of the microdomain structure in symmetric diblock copolymer poly(styrene-b-methyl methacrylate), P(S-b-MMA), ultrathin films via PMMA-selective solvent vapor treatment by atomic force microscopy (AFM). After preparation on a substrate preferentially attracting the PMMA block, PS forms a continuous layer at a film's free surface. With subsequent solvent vapor treatment, the film gradually shows a well-ordered hexagonally packed nanocylinders structure. It is shown that only when the film thickness is less than the 1/2L(0) (lamellar repeat spacing), and exposed to PMMA block selective solvent for an appropriate time, can the well-ordered hexagonally packed nanocylinders form. On an extended solvent vapor treatment, a mixed morphology containing nanocylinders and stripes appears, followed by the striped morphologies. When the annealing time is long enough, the film comes back to the flat surface again, however, with PMMA instead of PS dominating the free surface.
Resumo:
Binary symmetric diblock copolymer blends, that is, low-molecular-weight poly(styrene-block-methyl methacrylate) (PS-b-PMMA) and high-molecular-weight poly(styrene-block-methacrylate) (PS-b-PMA), self-assemble on silicon substrates to form structures with highly ordered nanoholes in thin films. As a result of the chemically similar structure of the PMA and the PMMA block, the PMMA chain penetrates through the large PMA block that absorbs preferentially on the polar silicon substrate. This results in the formation of nanoholes in the PS continuous matrix.
Resumo:
Previously, an inverted phase (the minority blocks comprising the continuum phase) was found in solution-cast block copolymer thin films. In this study, the effect of casting solvents on the formation of inverted phase has been studied. Two block copolymers, poly(styrene-b-butadiene) (SB) (M-w = 73 930 Da) and poly(styrene-b-butadiene-b-styrene) (SBS) (M-w = 140 000 Da), with comparable block lengths and equal polystyrene (PS) weight fraction (similar to30 wt %) were used. The copolymer thin films were cast from different solvents, toluene, benzene, cyclohexane, and binary mixtures of benzene and cyclohexane. Toluene and benzene are good solvents for both PS and PB, but have a preferential affinity for PS, while cyclohexane is a good solvent for PB but a Theta solvent for PS (T-Theta = 34.5 degreesC). The differential solvent affinity for PS and PB was estimated in terms of a difference between the polymer-solvent interaction parameter, chi, for each block. Under an extremely slow solvent evaporation rate, the time-dependent phase behavior during such a solution-to-film process was examined by freeze-drying the samples at different stages, corresponding to different copolymer concentrations, rho.