259 resultados para change of place
Resumo:
To study the transport mechanism of hydrophobic organic chemicals (HOCs) and the energy change in soil/solvent system, a soil leaching column chromatographic (SLCC) experiment at an environmental temperature range of 20-40 degreesC was carried out, which utilized a reference soil (SP 14696) packed column and a methanol-water (1:4 by volume ratio) eluent. The transport process quickens with the increase of column temperature. The ratio of retention factors at 30 and 40 degreesC (k'(30)/k'(40)) ranged from 1.08 to 1.36. The lower enthalpy change of the solute transfer in SLCC (from eluent to soil) than in conventional reversed-phase liquid chromatography (e.g., from eluent to C-18) is consistent with the hypothesis that HOCs were dominantly and physically partitioned between solvent and soil. The results were also verified by the linear solvation energy relationships analysis. The chief factor controlling the retention was found to be the solute solvophobic partition, and the second important factor was the solute hydrogen-bond basicity, while the least important factors were the solute polarizability-dipolarity and hydrogen-bond acidity. With the increase of temperature, the contributions of the solute solvophobic partition and hydrogen-bond basicity gradually decrease, and the latter decreases faster than the former. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The states of surface Co and Mo sites on nitrided CoMo supported on Al2O3 were studied by adsorption of CO and NO as IR probe molecules. Three IR bands at 2200, 2060 and 2025 cm(-1) were detected for adsorbed CO. These bands can be respectively attributed to the surface NCO species as a result of CO adsorbed on surface N sites, and linearly adsorbed CO on surface Co and Mo sites in low valence states. The addition of cobalt to the Mo nitride diminishes the band at 2200 cm(-1). This may be due to either the change of the surface structure of the supported nitride, or the formation of a new phase, CoxMoyNz, as suggested in the literature Kim et al., Catal. Lett., 1997, 43, 91 and Logan et al., Catal. Lett., 1998, 56, 165. Comparison of CO and NO adsorption on Mo2N/Al2O3 and CoMoNx/Al2O3 indicates that the presence of cobalt can promote the reduction and nitridation of Mo.
Resumo:
Ba0.5Sr0.5Co0.8Fe0.2O3-delta and Ba0.5Sr0.5Co0.8Ti0.2O3-delta oxides were synthesized by a combined EDTA-citrate complexing method. The catalytic behavior of these two oxides with the perovskite structure was studied during the reaction of methane oxidation. The pre-treatment with methane has different effect on the catalytic activities of both the oxides. The methane pre-treatment has not resulted in the change of the catalytic activity of BSCFO owing to its excellent reversibility of the perovskite structure resulting from the excellent synergistic interaction between Co and Fe in the oxide. However, the substitution with Ti on Fe-site in the lattice makes the methane pre-treatment have an obvious influence on the activity of the formed BSCTO oxide.
Resumo:
Carbon supported PtSn alloy and PtSnOx particles with nominal Pt:Sn ratios of 3:1 were prepared by a modified polyol method. High resolution transmission electron microscopy (HRTEM) and X-ray microchemical analysis were used to characterize the composition, size, distribution, and morphology of PtSn particles. The particles are predominantly single nanocrystals with diameters in the order of 2.0-3.0 nm. According to the XRD results, the lattice constant of Pt in the PtSn alloy is dilated due to Sn atoms penetrating into the Pt crystalline lattice. While for PtSnOx nanoparticles, the lattice constant of Pt only changed a little. HRTEM micrograph of PtSnOx clearly shows that the change of the spacing of Pt (111) plane is neglectable, meanwhile, SnO2 nanoparticles, characterized with the nominal 0.264 nm spacing of SnO2 (10 1) plane, were found in the vicinity of Pt particles. In contrast, the HRTEM micrograph of PtSn alloy shows that the spacing of Pt (111) plane extends to 0.234 nm from the original 0.226 nm. High resolution energy dispersive X-ray spectroscopy (HR-EDS) analyses show that all investigated particles in the two PtSn catalysts represent uniform Pt/Sn compositions very close to the nominal one. Cyclic voltammograms (CV) in sulfuric acid show that the hydrogen ad/desorption was inhibited on the surface of PtSn alloy compared to that on the surface of the PtSnOx catalyst. PtSnOx catalyst showed higher catalytic activity for ethanol electro-oxidation than PtSn alloy from the results of chronoamperometry (CA) analysis and the performance of direct ethanol fuel cells (DEFCs). It is deduced that the unchanged lattice parameter of Pt in the PtSnOx catalyst is favorable to ethanol adsorption and meanwhile, tin oxide in the vicinity of Pt nanoparticles could offer oxygen species conveniently to remove the CO-like species of ethanolic residues to free Pt active sites. (C) 2005 Elsevier Ltd. All rights reserved.