419 resultados para VOLTAMMETRY


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Manganous hexacyanoferrate (MnHCF) supported on graphite powder was dispersed into methyltrimethoxysilane-derived gels to yield a conductive composite, which was used as electrode material to construct a renewable three-dimensional MnHCF-modifed electrode. MnHCF acts as a catalyst, graphite powder ensures conductivity by percolation, the silicate provides a rigid porous backbone, and the methyl groups endow hydrophobicity and thus limit the wetting section of the modified electrode. Cyclic voltammetry was exploited to investigate the dependence of electrochemical behavior on supporting electrolytes containing various cations. The chemically modified electrode can electrocatalytically oxidize L-cysteine, and exhibits a distinct advantage of polishing in the event of surface fouling, as well as simple preparation, good chemical and mechanical stability, and good repeatability of surface renewal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Monolayer assembly of 2-mercapto-3-n-octylthiophene (MOT) having a relatively large headgroup onto gold surface from its dilute ethanolic solutions has been investigated by electrochemistry. An electrochemical capacitance measurement on the permeability of the monolayer to aqueous ions, as compared with its alkanethiol counterpart [CH3(CH2)(9)SH (DT)] with a similar molecular length, shows that the self-assembled monolayers (SAMs) of MOT can be penetrated by aqueous ions to some extent. Furthermore, organic molecular probes, such as dopamine, can sufficiently diffuse into the monolayer because a diffusion-limited current peak is observed when the dopamine oxidation reaction takes place, showing that the monolayer is loosely packed or dominated by defects. But the results of electron transfer to aqueous redox probes (including voltammetry in Fe(CN)(6)(3-/4-) solutions and electrochemical ac impedance spectrum) confirm that the monolayer can passivate the gold electrode surface effectively for its very low ratio of pinhole defects. Moreover, a heterogeneous patching process involving addition of the surfactants into the SAMs provides a mixed or hybrid membrane that has superior passivating properties. These studies show that the MOT monolayer on the electrode can provide an excellent barrier for hydrated ionic probe penetration but cannot resist the organic species penetration effectively. The unusual properties of the SAMs are attributed to the entity of the relatively large thiophene moiety between the carbon chain and the thiol group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of organic solvents on the electrochemical behavior of the soluble polyimide(PI) was studied by using cyclic voltammetry. It was found that PI can undergo electrochemical reaction in some solvents, while the electrochemical response can not be observed in other solvents. The results of IR spectra indicate that the effect of the solvents on the electrochemical behavior of PI is due to the different interactions between PI and the solvent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thickness of the gold film and its morphology, including the surface roughness, are very important for getting a good, reproducible response in the SPR technique. Here, we report a novel alternative approach for preparing SPR-active substrates that is completely solution-based. Our strategy is based on self-assembly of the gold colloid monolayer on a (3-aminopropyl)trimethoxysilane-modified glass slide, followed by electroless gold plating. Using this method, the thickness of films can be easily controlled at the nanometer scale by setting the plating time in the same conditions. Surface roughness and morphology of gold films can be modified by both tuning the size of gold nanoparticles and agitation during the plating. Surface evolution of the Au film was followed in real time by UV-vis spectroscopy and in situ SPRS. To assess the surface roughness and electrochemical stability of the Au films, atomic force microscopy and cyclic voltammetry were used. In addition, the stability of the gold adhesion is demonstrated by three methods. The as-prepared Au films on substrates are reproducible and stable, which allows them to be used as electrodes for electrochemical experiments and as platforms for studying SAMs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel glucose biosensor based on capacitive detection has been developed using molecularly imprinted polymers. The sensitive layer was prepared by electropolymerization of o-phenylenediamine on a gold electrode in the presence of the template (glucose). Cyclic voltammetry and capacitive measurements monitored the process of electropolymerization. Surface uncovered areas were plugged with 1-dodecanethiol to make the layer dense, and the insulating properties of the layer were studied in the presence of redox couples. The template molecules and the nonbound thiol were removed from the modified electrode surface by washing with distilled water. A capacitance decrease could be obtained after injection of glucose. The electrode constructed similarly but with ascorbic acid or fructose only showed a small response compared with glucose. The stability and reproducibility of the biosensor were also investigated. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The characterization of free base porphyrin 2,3,7,8,12,13,17,18-octakis(hexyl-thio) tetraazaporphyrin (H(2)OHTTAP) and its zinc(II) complexes [Zn(II)OHTTAP] containing eight thioether groups at the beta -pyrrole positions of the macrocycle was reported. Results obtained by cyclic voltammetry and differential pulse voltammetry indicated a five-electron reduction in five steps for each complex. They were oxidized in two single-electron-transfer steps to yield pi -cation radicals and dications and reduced in three single-electron-transfer steps to yield pi -anion radicals, dianions and trianions, respectively. The redox property of H(2)OHTTAP was unusual as compared to porphyrins (PPs) and phthalocyanines (Pcs). Each process was monitored by in situ thin-layer spectroelectrochemistry, which indicated that only the Ligand was electroactive. The existence of the eight hexylthio groups was responsible for the intrastack interactions and enhanced intracolumnar and intercolumnar electron motions, resulting in improved conductivity. Copyright (C) 2001 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conjugated bisthioester 1 was synthesized applying Sonogashira coupling reactions. Using self-assembly in combination with nanoparticles deposition techniques, we developed a novel method to fabricate a "gold electrode-molecular wire monolayers-gold nanoparticles" sandwich-like structure. Rapid electron propagation through this sandwich-like structure was observed by cyclic voltammetry and ac impedance measurements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we describe a simple procedure to make agar-gel microelectrodes by filling micropipettes. These microelectrodes were used to study K+ transfer across the agar-water \ 1,2-dichloroethane interface facilitated by dibenzo-18-crown-6 (DB18C6), and the transfer of tetraethylammonium (TEA(+)). The results observed were similar to those obtained at micro-liquid \ liquid interfaces. The effect of various amounts of agar in the aqueous phase was optimized and 3% agar was chosen based on the potential window and solidification time. The different shapes of micro-agar-gel electrodes were prepared in a similar way. The fabricated agar-gel microelectrodes obey the classical micro-disk steady-state current equation, which is different from the behavior of a normal micropipette filled with aqueous solution without silanization. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A polythiophene film was electrochemically deposited on a Pt micro-plate electrode and investigated by cyclic voltammetry and in-situ reflection microscopic FTIR spectroscopy. The FTIR analysis showed that the electropolymerization of thiophene on the Pt surface was affected Lv the surface adsorption processes of thiophene molecules. Two adsorption modes were identified. Two structure models of the polythiophene chain were observed simultaneously. It was proposed that the good conductibility of the polythiophene film was originated from a co-vibratory equilibrium of the link part of model I and model II.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The adsorption and oxidation of yeast RNA and herring sperm DNA (HS DNA) at glass carbon (GC) electrode are studied by differential pulse voltammetry (DPV) and in situ FTIR spectroelectrochemistry. Two oxidation peaks of yeast RNA are obtained by DPV, whose peak potentials shift negatively with increasing pH. The peak currents decrease gradually in successive scans and no corresponding reduction peaks occur, thus indicating that the oxidation process of yeast RNA is completely irreversible. The IR bands in the 1200-1800 cm-l range, attributed to the stretching and ring vibrations of nucleic acid bases, show the main spectral changes when the potential is shifted positively, which gives evidence that the oxidation process takes place in the base residues. The oxidation process of HS DNA is similar to that of yeast RNA. The results both from DPV and in situ FTIR spectroelectrochemistry confirm that the guanine and adenine residues can be oxidized at the electrode surface, which is consistent with the oxidation mechanism of nucleic acids proposed previously. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A kind of solid substrate, glassy carbon (GC) electrode. was selected to support self-assembled lipid layer membranes. On the surface of GC electrode. we made layers of dimyristoylphosphatidylcholine (DMPG, a kind of lipid). From electrochemical impedance experiments. we demonstrated that the lipid layers on the GC electrode were bilayer lipid membranes. We immobilized horseradish peroxidase (HRP) into the supported bilayer lipid membranes (s-BLM) to develop a kind of mediator-free biosensor for H2O2. The biosensor exhibited fine electrochemical response, stability and reproducibility due to the presence of the s-BLM. As a model of biological membrane, s-BLM could supply a biological environment for enzyme and maintain its activity. So s-BLM is an ideal choice to immobilize enzyme for constructing the mediator-free biosensor based on GC electrode. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel inorganic-organic hybrid material incorporating graphite powder and Keggin-type alpha -germanomolybdic acid (GeMo12) in methyltrimethoxysilane-based gels has been produced by the sol-gel technique and used to fabricate a chemically bulk-modified electrode. GeMo12 acts as a catalyst, graphite powder ensures conductivity by percolation, the silicate provides a rigid porous backbone, and the methyl groups endow hydrophobicity and thus limit the wetting section of the modified electrode. The GeMo12-modified graphite organosilicate composite electrode was characterized by cyclic and square-wave voltammetry. The modified electrode shows a high electrocatalytic activity toward the reduction of bromate, nitrite and hydrogen peroxide in acidic aqueous solution. In addition, the chemically-modified electrode has some distinct advantages over the traditional polyoxometalate-modified electrodes, such as long-term stability and especially repeatability of surface-renewal by simple mechanical polishing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we report the reverse electron transfer reaction between TCNQ in 1, 2-dichloroethane (DCE) and ferrocyanide in water. This process is a thermodynamic unfavorable reaction and the reverse electron transfer reaction can only be obtained by scanning electrochemical microscopy(SECM) in the presence of suitable potential-determining ions, which govern the interfacial potential difference. In our case, the potential determining ions are tetrabutylammonium ion(TBA(+)) and tetraphenylarsonium ion (TPAs+). The effects of the concentrations of TBA(+) and TPAs+ in two phases and other parameters have been studied in detail. The apparent heterogeneous rate constants(k(i)) were obtained under different values of K-p(K-p=c(i)(w)/c(i)(o)) for both cases by fitting the SECM approach curves with theoretical ones and the results showed that they were controlled by the interfacial potential differences. The relationship between apparent heterogeneous rate constants and the interfacial potential differences obeys Butler-Volmer theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cobalt(II) hexacyanoferrate (CoHCF) was deposited on graphite powder by an in situ chemical deposition procedure and then dispersed into methyltrimethoxysilane-derived gels to prepare a surface-renewable CoHCF-modified electrode. The electrochemical behavior of the modified electrode in different supporting electrolyte solutions was characterized by cyclic voltammetry. In addition, square-wave voltammetry was employed to investigate the pNa-dependent electrochemical behavior of the electrode. The CoHCF-modified electrode showed a high electrocatalytic activity toward thiosulfate oxidation and could thus be used as an amperometric thiosulfate sensor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In-situ Fourier transform infra-red (FTIR) spectra of native and thermally denatured calf thymus DNA (CT DNA) adsorbed and/or oxidized at a glassy carbon (GC) electrode surface are reported. The adsorption of native DNA occurs throughout the potential range (-0.2 similar to 1.3 V) studied, and the adsorbing state of DNA at electrode surface is changed from through the C=O band of bases and pyrimidine rings to through the C=O of cytosine and imidazole rings while the potential shifts negatively from 1.3 V to -0.2 V. An in-situ FTIR spectrum of native CT DNA adsorbed at GC electrode surface is similar to that of the dissolved DNA, indicating that the structure of CT DNA is not distorted while it is adsorbed at the GC electrode surface. In the potential range of -0.2 similar to 1.30 V, the temperature-denatured CT DNA is adsorbed at the electrode surface first, then undergoes electrochemical oxidation reaction and following that, diffuses away from the electrode surface. (C) 2001 Elsevier Science B.V. All rights reserved.