265 resultados para UV-visible
Resumo:
The interaction of antitumor antibiotic, echinomycin (Echi) with guanine (Gua) was thoroughly investigated by adsorptive transfer stripping cyclic voltammetry, ultraviolet and visible adsorption spectra (UV/Vis) and Fourier-transform infrared spectroscopy (FTIR). Electrochemistry provided a simple tool for verifying the occurrence of interaction between Echi and Gua. Echi could be accumulated from the solution and give well-defined electrochemical signals in 0.1 M phosphate buffer solution (pH 7.0) only when Gua was present on the surface of the electrochemically pretreated glass carbon electrode (GCE), suggesting a strong binding of Echi to Gua. All the acquired spectral data showed that a new adduct between Echi and Gua was formed, and two pairs of adjacent intermolecular hydrogen bonds between the Ala backbone atoms in Echi and Gua (Ala-NH to Gua-N3 and Gua-NH2 to Ala-CO) played a dominating role in the interaction. Electrochemistry coupled with spectroscopy techniques could provide a relatively easy way to obtain useful insights into the molecular mechanism of drug-DNA interactions, which should be important in the development of new anticancer drugs with specific base recognition.
Resumo:
To simplify the fabrication of multilayer light-emitting diodes, we prepared a p-phenylenevinylene-based polymer capped with crosslinkable styrene through a Wittig reaction. Insoluble poly(p-phenylenevinylene) derivative (PPVD) films were prepared by a thermal treatment. The photoluminescence and ultraviolet-visible (UV-vis) absorbance of crosslinked films and noncrosslinked films were studied. We also studied the solvent resistance of crosslinked PPV films with UV-vis absorption spectra and atomic force microscopy. Double-layer devices using crosslinked PPVD as an emitting layer, 2-(4-tert-butylphenyl)-5-phenyl-1,3,4-oxadiazole (PBD) in poly(methyl methacrylate) as an electron-transporting layer, and calcium as a cathode were fabricated. A maximum luminance efficiency of 0.70 cd/A and a maximum brightness of 740 cd/m(2) at 16 V were demonstrated. A 12-fold improvement in the luminance efficiency with respect to that of single-layer devices was realized.
Resumo:
Sequential deprotonations of meso-(p-hydroxyphenyl)porphyrins (p-OHTPPH2) in DMF + H2O (V/V = 1:1) mixture have been verified to result in the appearance of hyperporphyrin spectra. However, when the deprotonations of these p-OHTPPH2 are carried out in DMF, the spectral changes differ considerably from those in the mixture mentioned above. At low [OH-], the optical spectra in the visible region are still considered to have characteristics of hyperporphyrin spectra. Further deprotonation at much higher basicity makes the optical spectra form three-banded spectra similar to those in the acidic solution. To clarify the molecular origins of these changes, UV-vis, resonance Raman (RR), proton nuclear magnetic resonance (H-1 NMR) experiments are carried out. Our data give evidence that p-OHTPPH2 in DMF can be further deprotonated of pyrrolic-H by higher concentrated NaOH, due to an aprotic medium like DMF effectively weakening the basicity of the porphyrin relative to that of the NaOH, and coordinates with two sodium ions (except the sodium ions that interact with the peripherial phenoxide anions) to form the sodium complexes of p-OHTPPH2 (Na2P, to lay a strong emphasis on the sodium ions that coordinate with the central nitrogen atom), which can be regarded as the porphyrin anions being perturbed by the sodium cations due to their highly ionic character.
Resumo:
Molybdenum trioxide nanobelts and prism-like particles with good crystallinity and high surface areas have been prepared by a facile hydrothermal method, and the morphology could be controlled by using different inorganic salts, such as KNO3, Ca(NO3)(2), La(NO3)(3), etc. The possible growth mechanism of molybdenum trioxide prism-like particles is discussed on the basis of the presence of HI and the modification of metal cations. The as-prepared nanomaterials are characterized by means of powder X-ray diffraction (PXRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), Fourier transformation infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and ultraviolet and visible spectroscopy (UV-vis). TEM and HRTEM micrographs show that the molybdenum trioxide nanobelts and prism-like particles have a relatively high degree of crystallinity and uniformity. BET specific surface areas of the as-prepared molybdenum trioxide nanocrystals are 67-79 m(2)g(-1). XPS analysis indicates that the hexavalent molybdenum is predominant in the nanocrystals. UV-vis spectra reveal that the direct band gap energy of the annealed molybdenum trioxide prism-like particles shows a pronounced blue shift compared to that of bulk MoO3 powder.
Resumo:
A novel supramolecular inclusion complex of alpha-CD/C-60 was synthesized using anionic C-60. The reaction progress was monitored in situ by visible and near-IR spectroscopy. The obtained complex was characterized by UV-vis, C-13 NMR, MALDI-TOF, and cyclic voltammetry. The induction and dispersion forces are considered to be the major driving forces for the formation of a resulting alpha-CD/C-60(.-) inclusion complex.
Resumo:
A new solvothermal route has been developed for synthesizing the size-controlled CdSe nanocrystals with relatively narrow size distribution, and the photoluminescence (PL) quantum yields (QYs) of the nanocrystals can reach 5-10%. Then the obtained CdSe nanocrystals served as cores to prepare the core/shell CdSe/CdS nanocrystals via a two-phase thermal approach, which exhibited much higher PL QYs (up to 18-40%) than the CdSe core nanocrystals. The nanocrystal samples were characterized by ultraviolet-visible (UV-vis) absorption spectra, PL spectra, wide-angle Xray diffraction (WAXD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM).
Resumo:
In our study, the Eu2+ doped Li2CaSiO4 phosphors were initially synthesized by high temperature solid state method, and their luminescent properties were also investigated. Eu2+ ions occupied 8-coordinatid distorted dodecahedral Ca sites, leading to strong crystal field splitting. The strong crystal field splitting made the broad excitation band extending from UV to visible region. In addition, the high concentration of Li+ ions in the structure constrained the distortion of the emission centers, then resulted in a small stokes shift, similar to 1100 cm(-1). Under excitation, the Li2CaSiO4:Eu2+ phosphors emitted bluish green light with peak of 480 nm, FWHM of 31 nm and color coordination of (0.06, 0.44). The Eu2+ doped Li2CaSiO4 phosphor would be suitable for bluish green phosphor of white LEDs due to its excellent excitation profile and chromaticity.
Resumo:
Ultrathin multilayer films have been prepared by means of alternate adsorption of iron(Ill)-substituted heteropolytungstate anions and a cationic redox polymer on the 4-aminobenzoic acid modified glassy carbon electrode surface based on electrostatic layer-by-layer assembly. Cyclic voltammetry, electrochemical impedance spectroscopy and UV-Vis absorption spectrometry have been used to easily monitor the uniformity of thus-formed multilayer films. Especially, the electrochemical impedance spectroscopy is successfully used to monitor the multilayer deposition processes and is a very useful technique in the characterization of multilayer films because it provides valuable information about the interfacial impedance features. All these results reveal regular film growth with each layer adsorption. The resulting multilayer films can effectively catalyze the reduction of H2O2,NO2- and BrO3-.
Resumo:
A novel hybrid photochromic composite film composed of Preyssler's heteropoly acid H-12[EuP5W30O110] (EuP5W30) and polyvinylpyrrolidone (PVP) was prepared by dip-coating method. Atomic force microscopy (AFM) was used to investigate the surface topography. The change of characteristic peak in the infrared spectra (IR) was investigated. The TG curve showed three steps of weight loss and approximately revealed the composition of the hybrid film. Ultraviolet-visible adsorption spectra (UV-VIS) and electron resonance spectrum (ESR) were used to investigate the photochromic behavior and mechanism of hybrid film. The photoluminescent behavior of the film at room temperature was investigated to show the characteristic Eu3+ emission pattern of D-5(o)-F-7(J). The occurrence of photoluminescent activity confirms the potential for creating luminescent thin film with polyoxometalates (POMs).
Resumo:
Alignment films prepared from low molar mass photo-crosslinkable materials containing the cinnamate group can be used for aligning LCs after irradiating the films with linearly polarized UV light. The high contrast observed in the polarizing optical microscope between dark and bright images indicates that the alignment is quite uniform. As the photoreaction progresses. the average roughness of the films is increased. All the aggregate structures, 'lamellar crystals'. produced by the photo-crosslinking reaction are of a square shape.