262 resultados para UPLIFT BEHAVIOR
Resumo:
Deformation behavior of polyethylene/modified montmorillonites with polymerizable surfactant (PE/P-MMT) nanocomposite with strong interfacial interaction was studied by means of morphology observation and X-ray scattering measurements. The orientation of PE chains was accompanied by the orientation of well-dispersed MMT platelets due to the presence of strong interfacial interaction, and both of the orientations were parallel to the deformation direction. The high degree of orientation of MMT platelets and PE chains resulted from the synergistic movement of PE matrix and MMTs, which originated from the presence of a network-like structure.
Resumo:
Diblock polyampholyte brushes with different block sequences (Si/SiO2/poly(acrylic acid)-b-poly (2-vinylpyridine) (PAA-b-P2VP) brushes and Si/SiO2/P2VP-b-PAA brushes) and different block lengths were synthesized by sequent surface-initiated atom transfer radical polymerization (ATRP). The PAA block was obtained through hydrolysis from the corresponding poly(tert-butyl acrylate). The polyampholyte brushes demonstrated unique pH-responsive behavior. In the intermediate pH region, the brushes exhibited a less hydrophilic wetting behavior and a rougher surface morphology due to the formation of polyelectrolyte complex through electrostatic interaction between oppositely charged blocks. In the low pH and high pH regions, the rearrangement of polyampholyte brushes showed great dependence on the block sequence and block length. The polyampholyte brushes with P2VP-b-PAA sequence underwent rearrangement during alternative treatment by acidic aqueous solution (low pH value) and basic aqueous solution (high pH value).
Resumo:
Prussian blue/carbon nanotube (PB/CNT) hybrids with excellent dispersibility in aqueous solutions were synthesized by adding CNTs to an acidic solution of Fe3+, [Fe(CN)(6)](3-) and KCl. Fourier transform infrared spectroscopy, UV-vis absorption spectroscopy and scanning electron microscopy were employed to confirm the formation of PB/CNT hybrids. The PB nanoparticles formed on the CNT surfaces exhibit a narrow size distribution and an average size of 40 nm. The present results demonstrate that the selective reduction of Fe3+ to Fe2+ by CNTs is the key step for PB/CNT hybrid formation. The subsequent fabrication of the PB/CNT hybrid films was achieved by layer-by-layer technique. The thus-prepared PB/CNT hybrid films exhibit electrocatalytic activity towards H2O2 reduction.
Resumo:
The isothermal crystallization behavior of poly(L-lactic acid)/organo-montmorillonite nanocomposites (PLLA/OMMT) with different content of OMMT, using a kind of twice-functionalized organoclay (TFC), prepared by melt intercalation process has been investigated by optical depolarizer. In isothermal crystallization from melt, the induction periods (t(i)) and half times for overall PLLA crystallization (100 degrees C <= T-c <= 120 degrees C) were affected by the temperature and the content of TFC in nanocomposites. The kinetic of isothermal crystallization of PLLA/TFC nanocomposites was studied by Avrami theory. Also, polarized optical photomicrographs supplied a direct way to know the role of TFC in PLLA isothermal crystallization process. Wide angle X-ray diffraction (WAXD) patterns showed the nanostructure of PLLA/TFC material, and the PLLA crystalline integrality was changed as the presence of TFC. Adding TFC led to the decrease of equilibrium melting point of nanocomposites, indicating that the layered structure of clay restricted the full formation of crystalline structure of polymer.
Resumo:
Vanadium(III) complexes bearing tridentate salicylaldiminato ligands (2a-f) [OC6H4CH=NL]VCl2(THF) (L = CH2CH2OMe, 2a; CH2CH2NMe2, 2b; CH2C5H4N, 2c; 8-C9H6N (quinoline), 2d; 2-MeSC6H4, 2e; 2-Ph2PC6H4, 2f) and tridentate beta-enaminoketonato ligands [OC6H8CH=N-2-Ph2PC6H4]VCl2(THF) (2g) and [O(Ph)C=CHCH=N-2-Ph2PC6H4]VCl2(THF) (2h) were prepared from VCl3(THF)(3) by treating with 1.0 equiv of the deprotonated ligands in tetrahydrofuran (THF). These complexes were characterized by FTIR and mass spectrometry as well as elemental analysis. Structures of complexes 2e, 2f, and 2h were further confirmed by X-ray crystallographic analysis. These complexes were investigated as catalysts for olefin polymerization in the presence of organoaluminum compounds. On activation with Et2AlCl, complexes 2a-h exhibited high catalytic activities toward ethylene polymerization (up to 20.64 kg PE/mmol(v) center dot h center dot bar) even at high temperature, suggesting these catalysts possess high thermal stability.
Resumo:
A series of new titanium complexes bearing two regioisomeric trifluoromethyl-containing enaminoketonato ligands (3a-h and 6a-h), [PhN=CRCHC(CF3)O](2)TiCl2 (3a, R = Me; 3b, R = n-C5H11; 3c, R = i-Pr; 3d, R = Cy; 3e, R = t-Bu; 3f, R = CH=CHPh; 3g, R = Et; 3h, R = n-C11H23) and [PhN=C(CF3)CHC(R)O](2)TiCl2 (6a, R = Ph; 6b, R = n-C5H11; 6c, R = i-Pr; 6d, R = Cy; 6e, R = t-Bu; 6f, R = CH=CHPh; 6g, R = CHPh2; 6h, R = CF3) have been synthesized and characterized. X-ray crystal structures analyses suggest that complexes 3c-e and 6c-d all adopt a distorted octahedral geometry around the titanium center. Complexes 3c, 3d and 6c display a cis-configuration of the two chlorine atoms around the titanium center, while complex 6d shows a trans-configuration of the two chlorine atoms. Especially, the configurational isomers (cis and trans) of complex 3e were identified both in solution and in the solid state by NMR and X-ray analyses. With modified methylaluminoxane as a cocatalyst, all the complexes are active towards ethylene polymerization, and produce high molecular weight polymers.
Resumo:
Five new complexes based on rare-earth-radical [Ln(hfac)(3)(NIT-5-Br-3py)](2) (Ln=Pr (1), Sm (2), Eu (3), Tb (4), Tm (5); hfac = hexafluoroacetylacetonate; NIT-5-Br-3py = 2-(4,4,5,5-tetramethyl-3-oxylimidazoline-1-oxide)-5-bromo-3-pyridine) have been synthesized and characterized by X-ray crystal diffraction. The single-crystal structures show that these complexes have similar structures, in which a NIT-5-Br-3py molecule acts as a bridging ligand linking two Ln(III) ions through the oxygen atom of the N-O group and nitrogen atom from the pyridine ring to form a four-spin system. Both static and dynamic magnetic properties were measured for complex 4, which exhibits single-molecule magnetism behavior.