398 resultados para Self-assembled films
Resumo:
CTAB-stabilized silver nanoparticles were synthesized by NaBH4 reduction. The as-prepared nanoparticles can be self-assembled on 3-mercaptopropionic acid (MPA) modified gold electrode, which was supported strongly by XPS measurements. Exceptional long-term stability of the as-prepared colloidal silver aqueous solution and the desorption of silver nanoparticle ensemble on MPA after alcohol rinsing proved that these CTAB molecules adsorbed on silver core formed interdigitated bilayer structure. DPV and differential capacitance measurements were performed to characterize the as-prepared silver nanoparticle ensemble. and the interesting quantized capacitance charging behaviors were observed.
Resumo:
Multilayer films composed of heteropolyanions (HPAS, SiMo11 VO405-) and cationic polymer poly(diallyldimethylammonium chloride) on 4-aminothiophenol self-assembled-monolayer were fabricated by electrochemical growth. Growth processes of the composite films were characterized by cyclic voltammetry. The results prove the third redox peak of Mo increases more rapidly, otherwise the other Mo redox peaks increase very slowly when the number of layers of heteropolyanions is greater. The peak potentials of composite films shift linearly to negative position with higher pH, which implies that protons are involved in the redox processes of HPA. The investigation of electrocatalytic behaviors of composite films shows a good catalytic activity for the reductions of HNO2 and BrO3-. Catalytic currents increase with increasing number of layers of heteropolyanions, moreover, the catalytic currents have a good linear relationship with the concentrations of BrO3-.
Resumo:
Antibody was covalently immobilized by amine coupling method to gold surfaces modified with a self-assembled monolayer of thioctic acid. The electrochemical measurements of cyclic voltammetry and impedance spectroscopy showed that the hexacyanoferrate redox reactions on the gold surface were blocked due to the procedures of self-assembly of thioctic acid and antibody immobilization. The binding of a specific antigen to antibody recognition layer could be detected by measurements of the impedance change. A new amplification strategy was introduced for improving the sensitivity of impedance measurements using biotin labeled protein- streptavidin network complex. This amplification strategy is based on the construction of a molecular complex between streptavidin and biotin labeled protein. This complex can be formed in a cross-linking network of molecules so that the amplification of response signal will be realized due to the big molecular size of complex. The results show that this amplification strategy causes dramatic improvement of the detection sensitivity of hIgG and has good correlation for detection of hIgG in the range of 2-10 mug/ml. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The thickness of the gold film and its morphology, including the surface roughness, are very important for getting a good, reproducible response in the SPR technique. Here, we report a novel alternative approach for preparing SPR-active substrates that is completely solution-based. Our strategy is based on self-assembly of the gold colloid monolayer on a (3-aminopropyl)trimethoxysilane-modified glass slide, followed by electroless gold plating. Using this method, the thickness of films can be easily controlled at the nanometer scale by setting the plating time in the same conditions. Surface roughness and morphology of gold films can be modified by both tuning the size of gold nanoparticles and agitation during the plating. Surface evolution of the Au film was followed in real time by UV-vis spectroscopy and in situ SPRS. To assess the surface roughness and electrochemical stability of the Au films, atomic force microscopy and cyclic voltammetry were used. In addition, the stability of the gold adhesion is demonstrated by three methods. The as-prepared Au films on substrates are reproducible and stable, which allows them to be used as electrodes for electrochemical experiments and as platforms for studying SAMs.
Resumo:
A unique reverse micelle method has been developed to prepare gold-coated iron (Fe@Au) nanoparticles. XRD, UV/vis, TEM, and magnetic measurements are utilized to characterize the nanocomposites. XRD only gives FCC patterns of gold for the obtained nanoparticles. The absorption band of the Fe@Au colloid shifts to a longer wavelength and broadens relative to that of the pure gold colloid. TEM results show that the average size of Fe@Au nanoparticles is about 10 nm, These nanoparticles are self-assembled into chains on micron scale under a 0.5 T magnetic field. Magnetic measurements show that the particles are superparamagnetic with a blocking temperature (T-B) of 42 K, At 300 K (above T-B), no coercivity (Hc) and remanence (M-r) is observed in the magnetization curve, while at 2K (below T-B) He and M, are observed to be 728 Oe and 4.12 emu/g, respectively, (C) 2001 Academic Press.
Resumo:
Electroactive self-assembled monolayers (SAMs) with well-defined electrochemical responses were prepared by spontaneous assembly of the inclusion complexes (CD/C8VComegaSH) of viologen-attached alkanethiols (C8VComegaSH) and alpha- and beta-cyclodextrin (CD). They were characterized by X-ray photoelectron spectroscopy and cyclic voltammetry. The results demonstrate that the chemisorption process of CD/C8VComegaSH on gold substrate occurs through S-Au bonds, and that the redox sites in SAMs of CD/C8VComegaSH are in a much more uniform environment than those in SAMs of C8VComegaSH.
Resumo:
The interfacial characteristics of poly-L-lysine (PL) attached on self-assembled monolayers (SAMs) of 3-mercaptopropionic acid (MPA) were studied by an electrochemical method. The results indicated that PL\MPA layer inhibited partly the diffusion process of redox species in solution, and the electrode surface behaved like a microelectrode array. Its permeation effect was also strongly affected by Mg2+. The more Mg2+ ions were added into the electrolyte solution, the greater the difficulty with which the electron transfer of potassium ferricyanide took place. The three different conformations of PL on the electrode surface had different influences on the electron transfer processes of ferricyanide. PL in random coil state hindered most strongly the electron transfer behavior of ferricyanide,while the alpha-helical PL had nearly no effect and the effect of the beta-sheet state PL was intermediate of these. (C) 1997 Elsevier Science S.A.
Resumo:
A novel kind of K+ sensor with valinomycin-incorporated bilayers supported on a gold electrode consisting of self-assembled alkanethiol monolayers (SAMs) and a lipid monolayer has been fabricated successfully. The lipid monolayer is deposited on the alkylated surface of the first alkanethiol monolayer through three different methods, such as the Langmuir-Blodgett (LB) technique, painted method and painted-frozen method. The response of K + sensors produced by a painted or painted-frozen lipid monolayer on an alkanethiol alkylated gold electrode is larger than that by the LB method, which is due to the difference in fluidity of the three kinds of bilayers. Selectivity coefficients KK+, Na+, KK+, Li+, KK+, Ca2+ and KK+, Mg2+ are 10(-4), 10(-4), 2 x 10(-5) and 3 x 10(-5) respectively, and there is no obvious difference among different fabricating methods. A linear response toward the potassium ion was found in the range from 10(-1) M to 10(-5) M with the detection limit of 10(-6) M. The sensor has a slope of 60 mV per decade. Meanwhile, the longevity of the sensor was improved obviously for at least two months at about -10 degrees C. The higher stability shows the possibility to fabricate a practical biosensor.
Resumo:
Supported lipid membranes consisting of self-assembled alkanethiol and lipid monolayers on gold substrates could be produced by three different deposition methods: the Langmuir-Blodgett (L-B) technique, the painted method, and the paint-freeze method, By using cyclic voltammetry, chronoamperometry/chronocoulometry and a.c. impedance measurements, we demonstrated that lipid membranes prepared by these three deposition methods had obvious differences in specific capacitance, resistance and thickness. The specific capacitance of lipid membranes prepared by depositing an L-B monolayer on the alkanethiol alkylated surfaces was 0.53 mu Fcm(-2), 0.44 mu Fcm(-2) by the painted method and 0.68 mu Fcm(-2) by the paint-freeze method. The specific conductivity of lipid membranes prepared by the L-B method was over three times lower than that of the painted lipid membranes, while that of the paint-freeze method was the lowest. The difference among the three types of lipid membranes was ascribed to the influence of the organic solvent in lipid films and the changes in density of the films. The lipid membranes prepared by the usual painted method contained a trace amount of the organic solvent. The organic solvent existing in the hydrocarbon core of the membrane reduced the density of the membrane and increased the thickness of the membrane. The membrane prepared by depositing an L-B monolayer containing no solvent had higher density and the lowest fluidity, and the thickness of the membrane was smaller. The lipid membrane prepared by the paint-freeze method changed its structure sharply at the lower temperature. The organic solvent was frozen out of the membrane while the density of the membrane increased greatly. All these caused the membrane to exist in a ''tilted'' state and the thickness of this membrane was the smallest. The lipid membrane produced by the paint-freeze method was a membrane not containing organic solvent. This method was easier in manipulation and had better reproducibility than that of the usual painting method and the method of forming free-standing lipid film. The solvent-free membrane had a long lifetime and a higher mechanical stability. This model membrane would be useful in many areas of scientific research.
Resumo:
A new viologen derivative of N-(n-octyl)-N'-(10-mercaptodecyl)-4,4'-bipyridinium dibromide has been prepared and characterized by elemental analysis, IR, H-1 NMR, MS and TG-DTA. X-Ray photoelectron spectroscopy, cyclic voltammetry and chronoamperometry have been used to characterize the monolayers formed by this compound on the bulk gold electrodes by self-assembly.
Resumo:
N-Methyl-N'-hexadecylviologen (C16MV) has been the subject of several electrochemical and spectroelectrochemical studies which characterized the species present in various redox states for C16MV monolayers on silver electrode surfaces. Both self-assembled monolayers (SA) and Langmuir-Blodgett (LB) transferred systems have been studied. These indicated inconsistencies regarding the presence or absence of splitting of the first reduction peak in its cyclic voltammogram (CV). The present study demonstrates the important influence of the specific anionic species present in the supporting electrolyte. Splitting may or may not take place, depending on the size and relative strength of the adsorption of specific anions contributed by the supporting electrolyte. Small, strongly adsorbing anions such as iodide produced peak splitting in the CV of C16MV monolayers; bulky but weakly adsorbing anions such as perchlorate may disrupt the ordered structure of monolayers but produce no splitting. Ancillary data provided by surface enhanced Raman spectroscopy (SERS) was consistent with the electrochemical measurements.
Resumo:
Poly(2-acrylamido-hexadecylsulfonic acid) (PAMC16S) forms a stable monolayer on a pure water surface. More closely packed monolayers can be obtained when the subphase contains Cd2+ or Ca2+. Self-assembled monolayers have been formed on gold surfaces and characterized by contact angle measurement, XPS and electrochemical analysis. The results show that the monolayers are hydrophobic with the hydrophilic sulfonic acid groups adjacent to the metal surfaces and with the hydrocarbon chains extended from the surfaces. The monolayers exhibit great adsorption stability during the faradaic reactions, illustrating the advantage of polymeric LB films in potential applications.
Resumo:
In this paper, a hybrid device based on a microcantilever interfaced with bacteriorhodopsin (bR) is constructed. The microcantilever, on which the highly oriented bR film is self-assembled, undergoes controllable and reversible bending when the light-driven proton pump protein, bR, on the microcantilever surface is activated by visible light. Several control experiments are carried out to preclude the influence of heat and photothermal effects. It is shown that the nanomechanical motion is induced by the resulting gradient of protons, which are transported from the KCl solution on the cytoplasmic side of the bR film towards the extracellular side of the bR film. Along with a simple physical interpretation, the microfabricated cantilever interfaced with the organized molecular film of bR can simulate the natural machinery in converting solar energy to mechanical energy.
Resumo:
A self-assembled monolayer of octadecyltrichlorosilane (OTS) was prepared on a single-crystal silicon wafer (111) and its tribological properties were examined with a one-way reciprocating tribometer. The worn surfaces and transfer film on the counterface were analyzed by means of scanning electron microscopy and X-ray photoelectron spectroscopy. The results show that, due to the wear of the OTS monolayer and the formation of the transfer film on the counterpart ball, the friction coefficient gradually increases from 0.06 to 0.13 with increasing sliding cycles and then keeps stable at a normal load of 0.5N. The transfer film is characterized by deposition, accumulation, and spalling at extended test duration. Though low friction coefficients of the monolayer in sliding against steel or ceramic counterfaces are recorded, poor load-carrying capacity and antiwear ability are also shown. Moreover, the monolayer itself or the corresponding transfer film on the counterface fails to lubricate even at a normal load of 1.0 N. Thus, the self-assembled monolayer of octadecyltrichlorosilane can be a potential boundary lubricant only at very low loads.
Resumo:
In our previous work, bone cell networks with controlled spacing and functional intercellular gap junctions had been successfully established by using microcontact printing and self assembled monolayers technologies [Guo, X. E., E. Takai, X. Jiang, Q. Xu, G. M. Whitesides, J. T. Yardley, C. T. Hung, E. M. Chow, T. Hantschel, and K. D. Costa. Mol. Cell. Biomech. 3:95-107, 2006]. The present study investigated the calcium response and the underlying signaling pathways in patterned bone cell networks exposed to a steady fluid flow. The glass slides with cell networks were separated into eight groups for treatment with specific pharmacological agents that inhibit pathways significant in bone cell calcium signaling. The calcium transients of the network were recorded and quantitatively evaluated with a set of network parameters. The results showed that 18 alpha-GA (gap junction blocker), suramin (ATP inhibitor), and thapsigargin (depleting intracellular calcium stores) significantly reduced the occurrence of multiple calcium peaks, which were visually obvious in the untreated group. The number of responsive peaks also decreased slightly yet significantly when either the COX-2/PGE(2) or the NOS/nitric oxide pathway was disrupted. Different from all other groups, cells treated with 18 alpha-GA maintained a high concentration of intracellular calcium following the first peak. In the absence of calcium in the culture medium, the intracellular calcium concentration decreased slowly with fluid flow without any calcium transients observed. These findings have identified important factors in the flow mediated calcium signaling of bone cells within a patterned network.