258 resultados para Seismic UNIX
Resumo:
Based on the study of sequence stratigraphy, modern sedimentary, basin analysis, and petroleum system in Gubei depression, this paper builds high resolution sequence stratigraphic structure, sedimentary system, sandbody distribution, the effect of tectonic in sequence and sedimentary system evolution and model of tectonic-lithofacies. The pool formation mechanism of subtle trap is developed. There are some conclusions and views as follows. 1.With the synthetic sequence analysis of drilling, seismic, and well log, the highly resolution sequence structure is build in Gubei depression. They are divided two secondary sequences and seven three-order sequences in Shahejie formation. They are include 4 kinds of system traces and 7 kinds of sedimentary systems which are alluvial fan, under water fan, alluvial fan and fan-delta, fan-delta, lacustrine-fan, fluvial-delta-turbidite, lakeshore beach and bar, and deep lake system. Sandbody distribution is show base on third order sequence. 2.Based on a lot of experiment and well log, it is point out that there are many types of pore in reservoir with the styles of corrosion pore, weak cementing, matrix cementing, impure filling, and 7 kinds of diagenetic facies. These reservoirs are evaluated by lateral and profile characteristics of diagenetic facies and reservoir properties. 3.The effect of simultaneous faulting on sediment process is analyzed from abrupt slope, gentle slope, and hollow zone. The 4 kinds of tectonic lithofacies models are developed in several periods in Gubei depression; the regional distribution of subtle trap is predicted by hydro accumulation characteristics of different tectonic lithofacies. 4.There are 4 types of compacting process, which are normal compaction, abnormal high pressure, abnormal low pressure and complex abnormal pressure. The domain type is normal compaction that locates any area of depression, but normal high pressure is located only deep hollow zone (depth more than 3000m), abnormal low pressures are located gentle slope and faulted abrupt slope (depth between 1200~2500m). 5.Two types dynamic systems of pool formation (enclosed and partly enclosed system) are recognized. They are composed by which source rocks are from Es3 and Es4, cap rocks are deep lacustrine shale of Esl and Es3, and sandstone reservoirs are 7 kinds of sedimentary system in Es3 and Es4. According to theory of petroleum system, two petroleum systems are divided in Es3 and Es4 of Gubei depression, which are high or normal pressure self-source system and normal or low pressure external-source system. 6.There are 3 kinds of combination model of pool formation, the first is litholgical pool of inner depression (high or normal pressure self-source type), the second is fault block or fault nose pool in marginal of depression (normal type), the third is fault block-lithological pool of central low lifted block (high or normal pressure type). The lithological pool is located central of depression, other pool are located gentle or abrupt slope that are controlled by lithological, faulting, unconfirmed. 7.This paper raise a new technique and process of exploration subtle trap which include geological modeling, coring description and logging recognition, and well log constrained inversion. These are composed to method and theory of predicting subtle trap. Application these methods and techniques, 6 hydro objects are predicted in three zone of depression.
Resumo:
Based on the study of sequence stratigraphy, modern sedimentary, basin analysis, and petroleum system in abrupt slop of depression, this paper builds sedimentary system and model, sandy bodies distribution, and pool-forming mechanism of subtle trap. There are some conclusions and views as follows. By a lot of well logging and seismic analysis, the author founded up the sequence stratigraphic of the abrupt slope, systematically illustrated the abrupt slope constructive framework, and pointed out that there was a special characteristics which was that south-north could be divided to several fault block and east-west could be carved up groove and the bridge in studying area. Based all these, the author divided the studying area to 3 fault block zone in which because of the groove became the basement rock channel down which ancient rivers breathed into the lake, the alluvial fan or fan delta were formed. In the paper, the author illustrated the depositional system and depositional model of abrupt slope zone, and distinguished 16 kinds of lithofacies and 3 kinds of depositional systems which were the alluvial fan and fan-delta system, lake system and the turbidite fan or turbidity current deposition. It is first time to expound completely the genetic pattern and distributing rule of the abrupt slope sandy-conglomeratic fan bodies. The abrupt slope sandy-conglomeratic fan bodies distribute around the heaves showing itself circularity shape. In studying area, the sandy-conglomeratic fan bodies mainly distribute up the southern slope of Binxian heave and Chenjiazhuang heave. There mainly are these sandy-conglomeratic fan body colony which distributes at a wide rage including the alluvial fan, sub-water fluvial and the turbidite fan or the other turbidity current deposition in the I fault block of the Wangzhuang area. In the II fault block there are fan-delta front and sub-water fluvial. And in the Binnan area, there mainly are those the alluvial fan (down the basement rock channel) and the sandy-conglomeratic fan body which formed as narrowband sub-water fluvial (the position of bridge of a nose) in the I fault block, the fan-delta front sandy-conglomeratic fan body in the H fault block and the fan-delta front and the turbidity current deposition sandy-conglomeratic fan body in the m fault block. Based on the reservoir outstanding characteristics of complex classic composition and the low texture maturity, the author comparted the reservoir micro-structure of the Sha-III and Sha-IV member to 4 types including the viscous crude cementation type, the pad cementation type, the calcite pore-funds type and the complex filling type, and hereby synthetically evaluated 4 types sandy- conglomeratic fan body reservoir. In the west-north abrupt slope zone of Dongying Depression, the crude oil source is belonging to the Sha-III and Sha-IV member, the deep oil of Lijin oilfield respectively come from the Sha-III and Sha-IV member, which belongs to the autogeny and original deposition type; and the more crude oil producing by Sha-IV member was migrated to the Wangzhuan area and Zhengjia area. The crude oil of Binnan oil-field and Shanjiasi oil-field belongs to mixed genetic. It is the first time to illustrate systematically the genetic of the viscous crude that largely being in the studying area, which are that the dissipation of the light component after pool-forming, the biological gradation action and the bath-oxidation action, these oil accumulation belonging to the secondary viscous crude accumulation. It is also the first time to compart the studying area to 5 pool-forming dynamical system that have the characteristic including the common pressure and abnormal pressure system, the self-fountain and other-fountain system and the closing and half-closing system etc. The 5 dynamical systems reciprocally interconnected via the disappearance or merger of the Ethology and the fluid pressure compartment zone, the fault and the unconformity surface, hereby formed duplicated pattern oil-gas collecting zone. Three oil-gas pool-forming pattern were founded, which included the self-fountain side-direction migrated collecting pattern, the self-fountain side-direction ladder-shape pool-forming pattern and the other-fountain pressure releasing zone migrated collecting pattern. A series of systemic sandy-conglomeratic fan bodies oil-gas predicting theory and method was founded, based on the groove-fan corresponding relation to confirm the favorable aim area, according as the characteristic of seismic-facies to identify qualitatively the sandy-conglomeratic fan bodies or its scale, used the temporal and frequency analysis technique to score the interior structure of the sandy- conglomeratic fan bodies, applied for coherent-data system analysis technology to describe the boundary of the sandy-conglomeratic fan bodies, and utilized the well logging restriction inversion technique to trace quantificational and forecast the sandy-conglomeratic fan bodies. Applied this technique, totally 15 beneficial sandy-conglomeratic fan bodies were predicted, in studying area the exploration was preferably guided, and the larger economic benefit and social benefit was acquired.
Resumo:
This dissertation focuses on the basin geothermal history, tectonothermal evolution and the relationship between geothermal field evolution and hydrocarbon generation. Based on the research of present-day geothermal field, geothermal history of Eastern Subdepression of Liaohe Basin was reconstructed with available data from drillings, loggings, seismic cross-sections, BHTs and thermal indicators. 12 heat flow density values were calculated. Ranging from 45.7 mW/m~2 to 70.0 mW/m~2, the mean value of these determinations exhibits 58.0(±5.83mW/m~22). The heat flow density in the uplift and ramp is greater than that in the sag. The main factors affecting the heat flow density are the morphostructure of basement and thickness of sedimentary cover. The Subdepression experienced a much higher heat flow period from 43 Ma to about 25 Ma. The heat flow increased gradually from Sha3 stage to Dongying stage, and reached the peak at the late of Dongying stage, then cooled down. Structural subsidence analysis shows that the subsidence of Eastern Subdepression can be divided into two phases: earlier (25-43Ma) initial (rift) and late (since 25Ma) thermal subsidence. The lower present-day heat flow and the higher palaeo-heat flow corresponding to structural subsidence stage as well as the typical rift subsidence style in Eastern Subdepression provide with some insights to the tectonic-thermal evolution of the basin. The source rocks of Sha3 member began to generate oil in the Shal stage, and entered oil-window at the late of Dongying stage. The source rocks of Shal began to generate oil at the late of Dongying stage, and being at the stage of lower maturation-maturation now. Most of Dongying source rocks are not mature now. The late of Dongying stage is the critical time for the oil system.