641 resultados para SIO2
Resumo:
Y2O3: Eu3+ phosphor layers were deposited on monodisperse SiO2 particles with different sizes ( 300, 500, 900, and 1200 nm) via a sol-gel process, resulting in the formation of Y2O3: Eu3+@SiO2 core-shell particles. X-ray diffraction ( XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy ( TEM), time-resolved photoluminescence ( PL) spectra, and lifetimes were employed to characterize the Y2O3: Eu3+@SiO2 core-shell samples. The results of XRD indicated that the Y2O3: Eu3+ layers began to crystallize on the silica surfaces at 600 degrees C and the crystallinity increased with the elevation of annealing temperature until 900 degrees C. The obtained core-shell particles have perfect spherical shape with narrow size distribution and non-agglomeration. The thickness of the shells could be easily controlled by changing the number of deposition cycles ( 60 nm for three deposition cycles). Under the excitation of ultraviolet ( 250 nm), the Eu3+ ion mainly shows its characteristic red ( 611 nm, D-5(0)-F-7(2)) emissions in the core-shell particles from Y2O3: Eu3+ shells.
Resumo:
We introduced a new nanoreactor system consisting of nanochannel-filled Fe3O4 core and SiO2 shell. Different morphologies of Fe3O4@SiO2 Core-shell nanostructures could be obtained through simple HCI etching of the magnetic cores. The outer silica shells were permeable and the Fe3O4 cores were accessible to the reactants. Therefore, the present nanoreactor system was applied to catalyze the reduction of H2O2, and it showed outstanding catalytic activity compared with bare Fe3O4 or Fe3O4@SiO2 core-shell nanoparticles.
Resumo:
Bioactive SiO2-CaO-P2O5 gel (BAG) nanoparticles with 40 nm in diameter were synthesized by the sol-gel route and further modified via the ring-opening polymerization of lactide on the surface of particles. Surface modified BAG (mBAG) was introduced in poly(L-lactide) (PLLA) matrix as bioactive filler. The dispersibility of mBAG in PLLA matrix was much higher than that of rough BAG particles. Tensile strength of the mBAG/PLLA composite could be increased to 61.2 MPa at 2 wt% filler content from 53.4 MPa for pure PLLA. The variation of moduli of the BAG/PLLA and mBAG/PLLA composites always showed an enhancement tendency with the increasing content of filler loading. The SEM photographs of the fracture surfaces showed that mBAG could be homogeneously dispersed in the PLLA matrix, and the corrugated deformation could absorb the rupture energy effectively during the breaking of materials. In vitro bioactivity tests showed that both BAG and mBAG particles could endow the composites with ability of the calcium sediment in SBF, but the surface modification of BAG particles could weaken this capability to some extent. Biocompatibility tests showed that both BAG and mBAG particles could facilitate the attachment and proliferation of the marrow cells on the surface of the composite.
Resumo:
A simple, large scale, and one-step process for the preparation of tris(2,2'-bipyridyl)ruthenium(I) (Ru(bpy)(3)(2+)) doped SiO2@carbon nanotubes (MVNTs) coaxial nanocable used for an ultrasensitive electrochemiluminescence (ECL) is presented for the first time. More importantly, a directly coated as-formed functional material on ITO electrode surface exhibits excellent ECL behavior, good stability, and high sensitivity in the presence of tripropylamine (TPA). This novel functional material will find potential applications in biosensor, electrophoresis and electroanalysis.
Resumo:
Highly crystalline CaMoO4:Tb3+ phosphor layers were grown on monodisperse SiO2 particles through a simple sol-gel method, resulting in formation of core-shell structured SiO2@CaMoO4:Tb3+ submicrospheres. The resulting SiO2@CaMoO4: Tb3+ core-shell particles were fully characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectra (EDS), transmission electron microscopy (TEM), photoluminescence (PL), low-voltage cathodoluminescence (CL), and kinetic decays. The XRD results demonstrate that the CaMoO4:Tb3+ layers begin to crystallize on the SiO2 spheres after annealing at 400 degrees C and the crystallinity increases with raising the annealing temperature. SEM and TEM analysis indicates that the obtained submicrospheres have a uniform size distribution and obvious core-shell structure. SiO2@CaMoO4:Tb3+ submicrospheres show strong green emission under short ultraviolet (260 nm) and low-voltage electron beam (1-3 kV) excitation, and the emission spectra are dominated by a D-5(4) -F-7(5) transition of Tb3+(544 nm, green) from the CaMoO4:Tb3+ shells.
Resumo:
We present a simple, generally applicable procedure for obtaining diameter-controlled SiO2@ carbon nanotubes (CNTs) coaxial nanocables. These coaxial nanocables with high solubility in polar solvents, have been used as functional templates for assembling CNTs/Au nanorods heterogeneous nanostructures to form multifunctional assembly system. These hybrid nanostructures may find applications in nanoelectronics, photonics, and nanodevices.
Resumo:
Y0.9Eu0.1BO3 phosphor layers were deposited on monodisperse SiO2 particles of different sizes (300, 570, 900, and 1200 nm) via a sol-gel process, resulting in the formation of core-shell-structured SiO2@Y0.9Eu0.1BO3 particles. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), photoluminescence (PL), and cathodoluminescence (CL) spectra as well as lifetimes were employed to characterize the resulting composite particles. The results of XRD, FE-SEM, and TEM indicate that the 800 degrees C annealed sample consists of crystalline YBO3 shells and amorphous SiO2 cores, in spherical shape with a narrow size distribution. Under UV (240 nm) and VUV (172 nm) light or electron beam (1-6 kV) excitation, these particles show the characteristic D-5(0)-F-7(1-4) orange-red emission lines of Eu3+ with a quantum yield ranging from 36% (one-layer Y0.9Eu0.1BO3 on SiO2) to 54% (four-layer Y0.9Eu0.1BO3 on SiO2).
Resumo:
Monodisperse, core-shell-structured SiO2@NaGd(WO4)(2):Eu3+ particles were prepared by the sol-gel method. The samples were characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, photoluminescence (PL), and low-voltage cathodoluminescence (CL) as well as time-resolved PL spectra and lifetimes. PL and CL study revealed that the core-shell-structured SiO2@NaGd (WO4)(2):Eu3+ particles show strong red emission dominated by the D-5(0) - F-7(2) transition of Eu3+ at 614 nm with a lifetime of 0.74 ms. The PL and CL emission intensity can be tuned by the coating number of NaGd(WO4)(2):Eu3+ phosphor layers on SiO2 and by accelerating voltage and the filament current, respectively.
Resumo:
Nanocrystalline GdPO4 : Eu3+ phosphor layers were coated on non-aggregated, monodisperse and spherical SiO2 particles by Pechini sol-gel method, resulting in the formation of core-shell structured SiO2@GdPO4 : Eu3+ particles. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT IR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), photoluminescence (PL), low-voltage cathodoluminescence (CL), time-resolved PL spectra and lifetimes were used to characterize the core-shell structured materials. Both XRD and FT IR results indicate that GdPO4 layers have been successfully coated on the SiO2 particles, which can be further verified by the images of FESEM and TEM. Under UV light excitation, the SiO2@GdPO4: Eu3+ phosphors show orange-red luminescence with Eu(3+)sD(0)-F-7(1) (593 nm) as the most prominent group. The PL excitation and emission spectra suggest that an energy transfer occurs from Gd3+ to Eu3+ in SiO2@GdPO4: Eu3+ phosphors. The obtained core-shell phosphors have potential applications in FED and PDP devices.
Resumo:
Nanocrystalline Y3Al5O12: Ce3+/Tb3+ ( average crystalline size 30 nm) phosphor layers were coated on non-aggregated, monodisperse and spherical SiO2 particles by the sol-gel method, resulting in the formation of core-shell structured SiO2@Y3Al5O12:Ce3+/Tb3+ particles. X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, photoluminescence, cathodoluminescence spectra, as well as lifetimes were utilized to characterize the core-shell structured SiO2@Y3Al5O12: Ce3+/Tb3+ phosphor particles. The obtained core-shell structured phosphors consist of well-dispersed submicron spherical particles with a narrow size distribution. The thickness of the Y3Al5O12:Ce3+/Tb3+ shells on the SiO2 cores ( average size about 500 nm, crystalline size about 30 nm) could be easily tailored by varying the number of deposition cycles (100 nm for four deposition cycles). Under the excitation of ultraviolet and low-voltage electron beams (1-3 kV), the core-shell SiO2@Y3Al5O12:Ce3+/ Tb3+ particles show strong yellow-green and green emission corresponding to the 5d-4f emission of Ce3+ and D-5(4)-F-7(J) ( J = 6, 5, 4, 3) emission of Tb3+, respectively.
Resumo:
Hole mobility in a copper-phthalocyanine (CuPc)-based top-contact transistor has been studied with various organic layer thicknesses. It is found that the transistor performance depends on the thickness of the CuPc layer, and the mobility increases with the increase in the CuPc layer and saturated at the thickness of 6 ML. The upper layers do not actively contribute to the carrier transport in the organic films. The morphology of the organic layer grown on the bare SiO2/Si substrate is also presented. The analysis of spatial correlations shows that the CuPc films grow on the SiO2 according to the mixed-layer mode.
Resumo:
A novel isomeric polyimide/SiO2 hybrid material was successfully prepared through sol-gel technique, and its structure, thermal properties and nano-indenter properties were investigated. First, 3-[(4-phenylethynyl)phthalimide]propyl triethoxysilane (PEIPTES) was successfully synthesized, its structure was characterized by elemental analysis, FT-IR and C-13 NMR. The researches on solubility and thermal properties of PEIPTES show that it can be used for modifying nano-SiO2 precursor. Nano-SiO2 precursor was synthesized by tetraethoxysilane (TECS) through sol-gel technique. Then the PEIPTES solution and the nano-SiO2 precursor were mixed for 6 h to let the PEIPTES molecules react with the nano-SiO2 precursor, and modified nano-SiO2 precursor was obtained. The modified reaction was confirmed by the analyses of FT-IR. At last, isomeric polyimide/SiO2 hybrid material was produced by using isomeric polyimide resin solution and the modified nano-SiO2 precursor after heat treatment process. The structure analysis by SEM indicated that SiO2 particles dispersed in isomeric polyimide matrix homogeneously with nanoscale. Thermogravimetric analyzer, dynamic mechanical thermal analyzer and nano-indenter XP was employed to detect the properties of the materials, the results demonstrated that isomeric polyimide/SiO2 hybrid material has much better thermal properties and nano-indenter properties than those of isomeric polyimide.