401 resultados para SILVER-ALUMINA CATALYSTS
Resumo:
Graphitic-nanofilaments (GNFs) supported ruthenium catalysts were prepared and characterized by NZ physisorption, X-ray diffraction (XRD), transmission electron microscope (TEM) and temperature programmed reduction-mass spectroscopy (TPR-MS) and used for ammonia synthesis in a fixed bed microreactor. The TEMs of the Ru/GNFs and Ru-Ba/GNFs catalysts indicate that the Ru particles are in the range of 2-4 nm, which is the optimum size of Ru particles for the maximum number of B5 type sites. The activity of Ru-Ba/GNFs catalysts is higher than that of Ru-Ba/AC by about 25%. The methanation reaction on the Ru/GNFs catalyst is remarkably inhibited compared with a Ru/AC catalyst. High graphitization of GNFs is likely to be the reason for the high resistance to the methanation reaction. The power rate law for ammonia synthesis on Ru-Ba/GNFs catalysts can be expressed by r = Kp(NH3)(-0.4) P-N2(0.8) P-H2(-0.7), indicating that H-2 is an inhibitor for N-2 activation on the catalyst. Catalysts with the promoters Ba, K and Cs show large differences in activity for ammonia synthesis. The catalyst promoted with Ba (Ba/Ru = 0.2 molar ratio) was found to be the most active, whereas that with a K promoter was the least active. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
SbOx and SbOx/SiO2 catalysts were prepared and investigated for methane selective oxidation to HCHO. HCHO selectivity up to 41% can be obtained on Sb2O5/SiO2 catalyst at 873 K and just drop gently to 18% with temperature up to 923 K. HCHO selectivity for SbOx/SiO2 catalysts decreases gently with reaction temperature, so considerable value of HCHO selectivity can still be obtained at high temperatures.
Resumo:
The paper studies the direct oxidation of ethanol and CO on PdO/Ce0.75Zr0.25O2 and Ce(0.75)Zr(0.2)5O(2) catalysts. Characterization of catalysts is carried out by temperature-programmed desorption (TPD), temperature-programmed surface reaction (TPSR) techniques to correlate with catalytic properties and the effect of supports on PdO. The simple Ce0.75Zr0.25O2 is in less active for ethanol and CO oxidation. After loaded with PdO, the catalytic activity enhances effectively. Combined the ethanol and CO oxidation activity with CO-TPD and ethanol-TPSR profiles, we can find the more intensive of CO2 desorption peaks, the higher it is for the oxidation of CO and ethanol. Conversion versus yield plot shows the acetaldehyde is the primary product, the secondary products are acetic acid, ethyl acetate and ethylene, and the final product is CO2. A simplified reaction scheme (not surface mechanism) is suggested that ethanol is first oxidized to form intermediate of acetaldehyde, then acetic acid, ethyl acetate and ethylene formed going with the formation of acetaldehyde, acetic acid, ethyl acetate; finally these byproducts are further oxidized to produce CO2. PdO/Ce0.75Zr0.25O2 catalyst has much higher catalytic activity not only for the oxidation of ethanol but also for CO oxidation. Thus the CO poison effect on PdO/Ce0.75Zr0.25O2 catalysts can be decreased and they have the feasibility for application in direct alcohol fuel cell (DAFC) with high efficiency.
Resumo:
Several zeolite catalysts such as SAPO-11, ZSM-11, ZSM-12, etc. were selected to convert I-hexene to branched hexenes in this work. Pore size of the zeolite catalyst plays an important role on the yield and the distribution of branched isohexenes. And the zeolite catalysts with the pore size of 0.6nm are optimum to produce dimethylbutenes (DMB). SAPO-11 zeolite is a suitable skeletal isomerization catalyst, especially in the production of methyl pentenes. Under the following reaction conditions: WHSV=1.0 h(-1), H-2/hexene=8, T=250 degreesC, P=0.2 MPa, the yield of skeletal isohexenes remains above 80% at the prolonged time-on stream of 80 h, accompanying low C5-, C7+ products and low carbon deposition on the catalyst.
Resumo:
The catalytic decomposition of hydrazine over a series of MoNx/gamma-Al2O3 catalysts with different Mo loadings was investigated in a monopropellant thruster (10 N). When the Mo loading is equal to or higher than the monolayer coverage of MoO3 on gamma-Al2O3, the catalytic performance of the supported molybdenum nitride catalyst is close to that of the conventionally used Ir/gamma-Al2O3 catalyst. The MoNx/gamma-Al2O3 catalyst with a loading of about 23wt% Mo (1.5 monolayers) shows the highest activity for hydrazine decomposition. There is an activation process for the MoNx/gamma-Al2O3 catalysts at the early stage of hydrazine decomposition, which is probably due to the reduction of the oxide layer formed in the passivation procedure.
Resumo:
The behavior of different species during the temperature-programmed surface reaction (TPSR) of methane over various catalysts is traced by an online mass spectrometer, It is demonstrated that the transformation of MoO3 to molybdenum carbide hinders the activation of methane as well as the succeeding aromatization in the TPSR, If this transformation process is done before the reaction, the temperature needed for methane activation and benzene formation will be greatly lowered (760 and 847 K, respectively). On the basis of comparison of the catalytic behavior of molybdenum supported on different zeolites, it is suggested that the initial activation of methane is the rate-determining step of this reaction. For the cobalt catalysts supported on HMCM-22 or Mo catalysts supported on TiO2, no benzene formation could be observed during the TPSR, However, the prohibition of benzene formation is different in nature over these two catalysts: the former lacks the special properties exhibited by molybdenum carbide, which can continuously activate methane even when multiple layers of carbonaceous species are formed on its surface, while the latter cannot accomplish the aromatization reaction since there are no Bronsted acid sites to which the activated intermediates can migrate, although the activation of methane can be achieved on it. Only for the catalysts that possess both of these properties, together with the special channel structure of zeolite, can efficient methane aromatization be accomplished. (C) 2000 Academic Press.
Resumo:
We produced silver tubes with an outer diameter of 1 mu m, wall thickness of 200 nm, and length of hundreds of micrometers by hydrothermal treatment of aqueous solutions of AgNO3 and hyperbranched polyglycidol (HPG) at 165 degrees C. The surfaces of the silver tubes were chemically modified by HPG, which was confirmed by FTIR of the silver tubes.
Resumo:
Nanoporous VSB-5 nickel phosphate molecular sieves with relatively well controllable sizes and morphology of microspheres assembled from nanorods were synthesized at 140 degrees C over a short time in the presence of hexamethylenetetramine (HMT) by a facile hydrothermal method. The pH value, reaction time, and ratio of HMT to NaHPO2-H2O crucially influence the morphology and quality of the final products.