360 resultados para Organic amendment


Relevância:

20.00% 20.00%

Publicador:

Resumo:

By utilizing 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline:Li/MoO3 as an effective charge generation layer (CGL), we extend our recently demonstrated single-emitting-layer white organic light-emitting diode (WOLED) to realize an extremely high-efficiency tandem WOLED. This stacked device achieves maximum forward viewing current efficiency of 110.9 cd/A and external quantum efficiency of 43.3% at 1 mu A/cm(2) and emits stable white light with Commission Internationale de L'Eclairage coordinates of (0.34, 0.41) at 16 V. It is noted that the combination of effective single units and CGL is key prerequisite for realizing high-performance tandem WOLEDs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic thin-film transistor memory devices were realized by inserting a layer of nanoparticles (such as Ag or CaF2) between two Nylon 6 gate dielectrics as the floating gate. The transistor memories were fabricated on glass substrates by full thermal deposition. The transistors exhibit significant hysteresis behavior in current-voltage characteristics, due to the separated Ag or CaF2 nanoparticle islands that act as charge trap centers. The mechanism of the transistor memory operation was discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A highly efficient and colour-stable three-wavelength white organic light-emitting diode with the structure of indium tin oxide (ITO)/MoO3/N,N'-diphenyl-N,N'-bis (1-naphthylphenyl)-1,1'-biphenyl-4,4'-diamine (NPB)/4,4'-N,N'-dicarbazole-biphenyl (CBP): bis(2,4-diphenylquinolyl-N,C-2') iridium( acetylacetonate) (PPQ)(2)Ir(acac)/NPB/p-bis(p-N,N-diphenyl-aminostyryl)benzene (DSA-Ph):2-methyl-9,10-di(2-naphthyl) anthracene (MADN)/tris (8-hydroxyquinoline) aluminum (AlQ): 10-(2-Benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H,5H,11H-(1)-benzopyropyrano(6,7-8-i,j)quinolizin-11-one (C545T)/AlQ/LiF/Al is fabricated and characterized. A current efficiency of 12.3 cdA(-1) at an illumination-relevant brightness of 1000 cd m(-2) is obtained, which rolls off slightly to 10.3 cdA(-1) at a rather high brightness of 10 000 cd m(-2). We attribute this great reduction in the efficiency roll-off to the wise management of singlet and triplet excitons between emissive layers as well as the superior charge injection and diffusion balance in the device.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lead(IV) dioxide (PbO2) has been used as the electron injection layer (EIL) to realize high-efficiency inverted top-emitting organic light-emitting diodes (I-TOLEDs). It can be seen that the inserting of the PbO2 EIL significantly reduces operational voltage, thus greatly improving the current efficiency and power efficiency of fabricated I-TOLEDs. The 10-(2-benzothiazolyl)-1, 1, 7, 7-tetramethyl-2, 3, 6, 7-tetrahydro-1H, 5H, 11H-[1] benzopyrano [6, 7, 8-ij] quinolizin-11-one (C545T)-based I-TOLEDs with the PbO2 EIL exhibit a maximum current efficiency of 31.6 cd A(-1) and a maximum power efficiency of 14.3 lm W-1, which are both higher than 22.5 cd A(-1) and 5.4 lm W-1 of the I-TOLEDs with LiF as the EIL respectively. A detailed analysis with respect to the role mechanism of PbO2 in electron injection has been presented. The improvement in EL performance is attributed to the formation of the interfacial dipoles at the electrode interface due to charge transfer between PbO2 and Alq(3).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of NIR organic chromophores with donor-pi-acceptor-pi-donor structure are synthesized. Good thermal stability and strong photoluminescence in solid state render them suitable for application in light-emitting diodes. Exclusive near-infrared emission at 1080 nm with external quantum efficiency of 0.28% is obtained from the nondoped OLEDs. The longest electroluminescence wave-length is 1220 nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

series of a donor-acceptor-donor type of near-infrared (NIR) fluorescent chromophores based on [1,2,5]thiadiazolo[3,4-g]quinoxaline (TQ) as an electron acceptor and triphenylamine as an electron donor are synthesized and characterized. By introducing pendent phenyl groups or changing the pi-conjugation length in the TQ core, we tuned tile energy levels of these chromophores, resulting in the NIR emission in a range from 784 to 868 nm. High thermal stability and glass transition temperatures allow these chromophores to be used as dopant emitters, which can be processed by vapor deposition for the fabrication of organic light-emitting diodes (OLEDs) having the multilayered structure of ITO/MoO3/NPB/Alq(3):dopant emitter/BCP/Alq(3)/LiF/Al. The electroluminescence spectra of the devices based on these new chromophores cover a range from 748 to 870 nm. With 2 wt % of dopant 1, the LED device shows an exclusive NIR emission at 752 nm with the external quantum efficiency (EQE) as high as 1.12% over a wide range of current density (e.g., around 200 mA cm(-2)).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have found that organic light-emitting diode (OLED) performance was highly improved by using europium oxide (Eu2O3) as a buffer layer on indium tin oxide (ITO) in OLEDs based on tris-(8-hydroxyquinoline) aluminium (Alq(3)), which showed low turn-on voltage, high luminance, and high electroluminescent (EL) efficiency. The thickness of Eu2O3 generally was 0.5-1.5 nm. We investigated the effects of Eu2O3 on internal electric field distributions in the device through the analysis of current-voltage characteristics, and found that the introduction of the buffer layer balanced the internal electric field distributions in hole transport layer (HTL) and electron transport layer (ETL), which should fully explain the role of the buffer layer in improving device performance. Our investigation demonstrates that the hole injection is Fowler-Nordheim (FN) tunnelling and the electron injection is Richardson-Schottky (RS) thermionic emission, which are very significant in understanding the operational mechanism and improving the performance, of OLEDs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stoichiometric reactions between mesityl azide (MesN(3), Mes = 2,4,6-C6H2Me3) and amino-phosphine ligated rare-earth metal alkyl, LLn(CH2SiMe3) (2)(THF) (L = (2,6-C6H3Me2)NCH2C6H4P(C6H5)(2); Ln = Lu (1a), Sc (1b)), amide, LLu(NH(2,6-(C6H3Pr2)-Pr-i))(2)(THF) (2) and acetylide at room temperature gave the amino-phosphazide ligated rare-earth metal bis(triazenyl) complexes, [L(MesN(3))]Ln[(MesN(3))-(CH2SiMe3)](2) (Ln = Lu (3a); Sc (3b)), bis(amido) complex [L(MesN3)] Lu[NH(2,6-C6H3 Pr-i(2))](2) (4), and bis(alkynyl) complex (5) (L(MesN(3))Lu (C CPh)(2))(2), respectively. The triazenyl group in 3 coordinates to the metal ion in a rare eta(2)-mode via N-beta and N-gamma atoms, generating a triangular metallocycle. The amino-phosphazide ligand, L(MesN(3)), in 3, 4 and 5 chelates to the metal ion in a eta(3)-mode via N-alpha and N-gamma atoms. In the presence of excess phenylacetylene, complex 3a isomerized to 3', where the triazenyl group coordinates to the metal ion in a eta(3) mode via Na and Ng atoms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cost-effective organic sensitizers will play a pivotal role in the future large-scale production and application of dye-sensitized solar cells. Here we report two new organic D-pi-A dyes featuring electron-rich 3,4-ethylenedioxythiophene- and 2,2'-bis(3,4-ethylenedioxythiophene)-conjugated linkers, showing a remarkable red-shifting of photocurrent action spectra compared with their thiophene and bithiophene counterparts. On the basis of the 3-f{5'-[N,N-bis(9,9-dimethylfluorene-2-yl)phenyl]-2,2'-bis(3,4-ethylenedioxythiophene)-5-yl}2-cyanoacrylic acid dye, we have set a new efficiency record of 7.6% for solvent-free dye-sensitized solar cells based on metal-free organic sensitizers. Importantly, the cell exhibits an excellent stability, keeping over 92% of its initial efficiency after 1000 h accelerated tests under full sunlight soaking at 60 degrees C. This achievement will considerably encourage further design and exploration of metal-free organic dyes for higher performance dye-sensitized solar cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We employed a binary spacer of orderly conjugated 3,4-ethyldioxythiophene and thienothiophene to construct a wide-spectral response organic chromophore for dye-sensitized solar cells, exhibiting a high power conversion efficiency of 9.8% measured under irradiation of 100 mW cm(-2) air mass 1.5 global (AM1.5G) sunlight and an excellent stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Six organic dyes with different conjugated linkers such as furan, bifuran, thiophene, bithiophene, selenophene, and biselenophene have been prepared in combination with the dihexyloxy-substituted triphenylamine donor and the cyanoacrylic acid acceptor. In conjunction with an acetonitrile-based electrolyte and a solvent-free ionic liquid electrolyte, these dyes exhibit 6.88-7.77% and 6.39-7.00% efficiencies, respectively. We have demonstrated that furan and selenophene can be employed as building blocks of sensitizers in stable solar cells for the first time. We have also studied the influence of heteroatoms on photocurrents and photovoltages with the aid of quantum calculations and transient photoelectrical decay measurements. Temperature-dependent electrical impedance experiments have shown that a relatively low external quantum efficiency of the dye with biselenophene linker is not related to the charge collection yield in the case of an acetonitrile electrolyte.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel bilayer photoresist insulator is applied in flexible vanadyl-phthalocyanine (VOPc) organic thin-film transistors (OTFTs). The micron-size patterns of this photoresisit insulator can be directly defined only by photolithography without the etching process. Furthermore, these OTFTs exhibit high field-effect mobility (about 0.8 cm(2)/Vs) and current on/off ratio (about 10(6)). In particular, they show rather low hysteresis (< 1 V). The results demonstrate that this bilayer photoresist insulator can be applied in large-area electronics and in the facilitation of patterning insulators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Layered organic-inorganic composite materials (C5H10N3)PbX4 (X = Br 1, Cl 2) containing histaminium dications were grown via a solution-cooling process, and their structure and optical properties were determined. The organic ligand-histaminium introduced into the corner-sharing octahedra of the 'PbX4- layer' contains both primary ammonium and imidazolium different from the traditionally primary amine found in this system. As comparison, another analogous amine of 3-amino-1,2,4-triazol was used as ligand to coordinate with PbBr2 in acid solution. A novel complex (C2H2N4)PbBr3 (3) was obtained with zigzag PbBr2 chains different from the PbX4 layer in compound as 1 and 2. The hybrid (C5H10N3)PbX4 show exciton absorption at 339 nm for X = Cl and 419 nm for X = Br with the corresponding emission at 360 and 436 nm, respectively. The different PbBr2 chain structure of compound 3 does not show photo luminescence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By varying the substituent position of aminomethyl on pyridine ring in acid solution, different dimensional lead bromide frameworks ranging from zero-dimension and one-dimension to two-dimension were obtained. 2-(Aminomethyl)pyridine (2-AMP) or 3-(aminomethyl)pyridine (3-AMP) and PbBr2 construct hybrid perovskites, of which (H(2)2-AMP)PbBr4 (1) exhibits two-dimensional perovskite sheets with special hydrogen bonds and (H(2)3-AMP)PbBr6 (2) shows an uncommon zero-dimensional inorganic framework with isolated octahedra. The characteristic exciton peaks in absorption spectra are located at 431 nm for compound 1 and at 428 nm for compound 2. (H(2)4-AMP)PbBr4 (3) with one-dimensional zigzag edge-sharing octahedral PbBr(4)(2-)chains can be obtained using 4-(aminomethyl)pyridine (4-AMP) as organic component under the same experimental conditions as those for 2-AMP and 3-AMP.