392 resultados para Nitrite oxidation inhibitor
Resumo:
A series of new catalysts, K-14[Ln(As2W17O61)(2)]. xH(2)O (Ln = La, Pr, Sm, Eu, Gd, Tb, Dy, Tm and Yb) which can electrocatalyze reduction of nitrite are presented and their electrochemical behavior is described in this paper. Bis(2:17-arsenotungstate) lanthanates which are monovacant Dawson derivatives, exhibit two 2-electron and one 1-electron waves, attributed to electron addition and removal from the tungsten-oxide framework that comprises each anion structure. The formal potentials of redox couples are dependent on solution pH. Double-hump principle of formal potentials takes effect with increasing atomic number of lanthanide elements following their special electronic shell structure. The third waves of all the heteropolyanions have good electrocatalytic activities for nitrite reduction at pH 5.0.
Resumo:
A modified method for dispersing platinum particles on a glassy carbon (GC) electrode was investigated. The ultramicro Pt particle-modified electrode obtained exhibited high catalytic stability and activity towards the oxidation of some halide ions (Br-, I-) and inorganic sulfur species (S2O32-, SO32- and SCN-). These anions were separated and detected by using ion chromatography and electrochemical detection via this novel dispersed Pt particles-GC working electrode. The detection limits were 20 ng/ml for Br-, 1.0 ng/ml for I-, 10 ng/ml for SO32- and 4.0 ng/ml for SCN-. This method was employed for the analysis of industrial and environmental waste waters.
Resumo:
Three couples of reversible redox waves of the SiW12O404- anion which are composed of two one-electron and one two-electron processes occur in the potential range +0.1 to -0.7 V in aqueous solutions. The first (most positive) and third (most negative) redox waves exhibit good electrocatalytic activities for nitrite reduction in acid solutions with pH < 2 for the former and with pH similar or equal to 4 for the latter. The behavior of the third catalytic wave, which is quite unusual, was studied in detail. The rate constant governing the reduction of NO2- by the first wave of SiW12O404- was measured by an ultramicrodisk electrode as 3.73 x 10(3) M(-1) s(-1).
Resumo:
Chemically modified electrodes (CMEs) were prepared by adsorbing different dyes, including methylene blue (MB), toluidine blue (TB) and brilliant cresyl blue (BCB), onto glassy carbon electrodes (GCE) with anodic pretreatment. The electrochemical reactions of adsorbed dyes are fairly reversible at low coverages. The CMEs are more stable in acid solutions than in alkaline ones, which is mainly due to decomposition of the dyes in the latter media. They exhibit an excellent catalytic ability for the oxidation of nicotinamide coenzymes (NADH and NADPH). The formation of a charge transfer complex between the coenzyme and the adsorbed mediator has been demonstrated using a rotating disk electrode. The charge transfer complex decomposition is a slow step in the overall electrode reaction process. Some kinetic parameters are estimated. Dependence of the electrocatalytic activity of the CMEs on the solution pH is discussed.
Resumo:
The electrochemical behavior of catechol, hydroquinone and resorcinol on GC and PPy/GC electrode surface were studied by CV and RDE method. The results indicated that these three substance could be oxidized electrocatalytically on PPy film electrode. The possibility of fabrication of amperometric electrochemical sensor for catechol was also studied.
Resumo:
It has been found that the interaction between the two transition metal Mn, Co ions on B-site and their Redox property an the important factors influencing the NO-selectivity in ammonia oxidation. The NO-selectivity is related to the redox ability of Mn3+
Resumo:
In the cyclic voltammograms of complexes with periodate and tellurate, the anodic and cathodic peaks were observed evidently for Cu(III)/Cu(II) couples in caustic potash aqueous solutions. Copper(III) complexes were obtained by utilizing ozone as oxidant
Resumo:
The structure and catalytic,activity for propylene oxidation of series oxides B2Mo3-3X-Nb2XO12-4X (X=0.00, 0.02, 0.05, 0.10, 0.15, 0.20, 0.25) have been studied by means of XRD, IR, Raman, SEM, ESR and so on. The results showed that in the range of X < 0.
Resumo:
Dicyanobis(1,10-phenanthroline)iron(II)-modified glassy carbon electrodes were shown to exhibit an electrocatalytic response for the oxidation of acetaminophen with a decrease of 100 mV in the potential required. It can also inhibit the oxidation of ascor
Resumo:
Oxochromium (V) tetraphenylporphyrin complexes, O = Cr (V) TPP (Cl) PhI. O = Cr-(V) TPP (N3) PhI and O = Cr (V)TPP (p-CH3OC6H4O)1/2PhI were isolated from the reaction of Cr (III) TPP (Cl). Cr (III) TPP (N3) Py or Cr (III) TPP (p-CH3OC6H4O) THF with iodosy
Resumo:
G chemically modified electrode (CME) was prepared by electrochemical copolymerization of pyrrole and Methylene Blue. The resulting CME exhibits effective electrocatalytic activity towards the oxidation of reduced nicotinamide coenzymes (NADH and NADPH),
Resumo:
Electrocatalytic oxidation of sulfhydryl compounds was effective on a copper hexacyanoferrate (CuHCF) film glassy carbon electrode, at a significantly reduced overpotential (0.55 to 0.65 V) and for a broader pH range (2.0 to 7.0). The electrocatalysis was
Resumo:
Chemically modified electrodes with Methylene Green adsorbed on the graphite surface and incorporated into carbon paste exhibit excellent electrocatalytic ability for oxidation of NADH. Alcohol dehydrogenase, nicotinamide adenine dinucleotide (NAD+) and m
Resumo:
An investigation of electrode oxidation processes of (tetra-phenylporphinato) manganese (III) Perchlorate, (TPS)Mn(III)ClO4, was carried out during the titration of chloride anions by conventional cyclic voltammetry, thin-layer cyclic voltammetry and spectroelectrochemistry. It was demonstrated that in the presence of one equivalent amount of Cl-, the first one electron oxidation reaction corresponds to the Mn(III)I cation radical oxidation, and the second one electron oxidation corresponds to the cation radical/dication generation followed by an iso-porphyrin formation reaction, however in the presence of two equivalent amount of Cl-, the first one electron oxidation of Mn(III) gives Mn(IV) porphyrin and the second one electron oxidation generates cation radicals of Mn(IV) followed by an iso-porphyrin formation reactions. Mechanisms of these redox processes are postulated.
Resumo:
The anodic oxidation kinetics of hydrazine on glassy carbon electrodes in acetonitrile were examined by cyclic voltammetry, a rotating ring-disc electrode technique and chronoamperometry. The experimental results of the rotating ring-disc electrode prove that hydrazine is oxidized to HN=NH, which cannot be oxidized further in acetonitrile. Hydrazine molecules are adsorbed on the electrode surface. One-third of the adsorbed hydrazine molecules are oxidized to HN=NH and the other two thirds act as proton acceptors. A possible mechanism of hydrazine oxidation is proposed.