368 resultados para LRP-6
Resumo:
应用基质辅助激光解吸电离飞行时间质谱,在不同阳离子剂的存在下,对6氟双酚A聚芳醚酮(砜)环状低聚物的结构进行了确认,研究了环状化合物对金属离子的选择性及激光质谱表征含氟环状低聚物的适宜条件.
Resumo:
尼龙1010/6 和尼龙1010/66 的基本物理性能随着组成的改变而改变,尼龙1010 含量高时,共聚物密度大于计算值;含量低时,共聚物密度小于计算值.尼龙1010 含量20%左右时,共聚物具有较大吸水率
Resumo:
Molecule dynamics simulation was used on HPT(2,3,6,7,10,11-hexa-n-pentyloxytriphenylene), which is a discotic Liquid crystal. From analyzing the energy and displacement varying with the temperature, the phase transition temperature of PM6MPP can be predicted. The deviations of T-g, T-m and T-i due to the MD time scale are small enough that it should be possibly used to predict the material properties especially when more powerful computers are available.
Resumo:
The compatibilizing effect and mechanism of compatibilization of the diblock copolymer polystyrene-block-poly(4-vinylpyridine) P(S-b-4VPy) on immiscible blends of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO)/chlorinated polyethylene (CPE) were studied by means of scanning electron microscopy (SEM), differential scanning calorimetry (DSC), mechanical properties and FTIR measurements. The block copolymer was synthesized by sequential anionic polymerization and melt-blended with PPO and CPE. The results show that the P(S-b-4VPy) added acts as an effective compatibilizer, located at the interface between the PPO and the CPE phase, reducing the interfacial tension, and improving the interfacial adhesion. The tensile strength and modulus of all blends increase with P(S-b-4VPy) content, whereas the elongation at break increases for PPO-rich blends, but decreases for CPE-rich blends. The polystyrene block of the diblock copolymer is compatible with PPO, and the poly(4-vinylpyridine) block and CPE are partially miscible.
Resumo:
Experimental electron diffraction patterns and high resolution images were used to determine the space group and unit cell dimensions of 2,3,6,7,10,11-hexakispentyloxytriphenylene. Subsequently the molecular conformation was calculated by energy minimized package in Cerius2. Using this method, we got the HPT crystal structure: space group: P6/mmm; lattice type: hexogonal; the lattice parameters are a = b = 20.3 angstrom, c = 3.52 angstrom, = = 90 degrees, = 120 degrees. The core of HPT is not perpendicular to the column. The angle between a axis and HPT core plane is 9 degrees which cannot be seen in b-c projection. The simulated ED patterns and HREM images are good agreement with the experimental ED patterns and HREM images.
Resumo:
Cyclic voltammetry and in-situ microscopic FTIR spectroelectrochemistry were used for the electrochemical and vibrational characterizations of the reduction process of K3Fe (CN)(6) in polyethylene glycol(PEG) with LiClO4 as supporting electrolyte at a Pt microelectrode. The rate of electron transfer is a function of the concentration of the supporting electrolyte. The redox potentials and cyclic voltammetric currents vary with Li/O molar ratio. The bl-situ spectroelectrochemistry shows that the infrared spectra are influenced by the concentration of LiClO4. The bridging cyanide groups with a structure Fe-I-C drop N ... Fe-I-C drop N are formed during the reduction process of K3Fe (CN)(6). There may be an activated complex between the Lif cation and the complex anion.
Resumo:
Organic-inorganic radical salt (DBTTF)(6)PMo12O40 . 2H(2)O was synthesized by electrocrystallization and characterized by IR spectrum, electronic spectrum and ESR technology, Its magnetic property, conductivity and crystal structure were determined. The title compound crystallized in a triclinic system with P1 space group, a = 1.378 7(7), b = 1.420 4 (2), c = 1.570 2(2) nm, alpha = 104.57(1)degrees, beta = 103.41(2)degrees, gamma = 95.80(2)degrees, V = 2.853(2) nm(3) Z = 1 and a final R = 0.072 7.
Resumo:
The poly(monoester (6-[4-(p-nitrophenyl) azo]phenoxy-1-hexyloxy) of maleic anhydride) shows a smectic phase with a focal conic fan texture. With the decrease of the monoestering degree the phase transition temperature decreases and the mesomorphic temperature range becomes narrow. The hydrogen bonding between two carboxylic acid groups was found to play a very important role in forming the smectic phase structure. The smectic bilayer structure has been built through self-assembly via. intermolecular hydrogen bonding.
Resumo:
The title compound, C24H24O3Si2, is a twofold symmetric silicocrown ether with the two dimethylsilyl groups attached to the O atoms of 1,1'-bi-2-naphthol, and bridged by another O atom.
Resumo:
LnCl3(Ln=Pr,Er)与AlCl3在二甲苯中反应,合成了η6-(m-Me2C6H4)Ln(AlCl4)3这两个新配合物并对其进行了元素分析、红外光谱和质谱的表征。测定了Pr配合物的晶体结构。该配合物具有扭曲的五角双锥几何构型。二甲苯和一个氯原子处于两个顶点,Pr配合物属单斜晶系,空间群P21/n,晶胞参数为a=9.870(3),b=16.794(8),c=16.025(7),β=94.40(3)°,V=2648.513,Z=4。平均Pr-C为2.95(2)。
Resumo:
采用聚氯乙烯尼龙6树脂分离富集溶解于王水中的金精矿样品中的金,然后用乙二胺溶液洗脱,并用碘量法测金。经标样验证,结果令人满意。
Resumo:
采用聚氯乙烯尼龙6树脂分离富集溶解于王水金精矿样品中的金,然后用亚硫酸钠和碘化钾的混合溶液洗脱,并用硫代米氏酮显色,同时将普通光度法、差示光度法以及稀释有色溶液的差示光度法结合起来进行测定。通过标样验证,结果令人满意。
Resumo:
Using high molecular weight (M-n=80,000) Poly(hexano-6-lactone) (PCL'), tough and high tenacity PCL monofilaments with various draw ratios (undrawn to 9 times drawn) were prepared by melt-spinning. The relationship between microstructure and properties of the PCL fibers is described in this current IUPAC Technical Report. Analysis of microstructure of the drawn PCL fibers by wide-angle X-ray diffraction revealed typical c-axis orientation with an increase in crystallinity. It was also supported by sonic velocity measurements. The thermal, mechanical, and dynamic mechanical properties of the PCL fibers were affected significantly by draw ratio. DSC thermograms showed that the melting temperature and the enthalpy of fusion increased with draw ratio. The temperature dependence curves of dynamic viscoelasticity showed that the temperature at tan delta peak of alpha dispersion corresponding to the glass transition temperature shifted toward higher temperature and the peak value of tan delta decreased with draw ratio. The dynamic storage modulus and the sonic modulus increased with draw ratio. These results are due to the increase in crystallinity and molecular orientation with drawing, and are responsible for an increase in tensile tenacity as well as knot tenacity of the PCL fibers.