294 resultados para Gene ABO
Resumo:
A goose-type lysozyme (g-lysozyme) gene has been cloned from the mandarin fish (Siniperca chuatsi), with its recombinant protein expressed in Escherichia coli. From the first transcription initiation site, the mandarin fish g-lysozyme gene extends 1307 nucleotides to the end of the 3' untranslated region, and it contains 5 exons and 4 introns. The open reading frame of the glysozyme transcript has 582 nucleotides which encode a 194 amino acid peptide. The 5' flanking region of mandarin fish glysozyme gene shows several common transcriptional factor binding sites when compared with that from Japanese flounder (Paralichthys olivaceus). The recombinant mandarin fish g-lysozyme was expressed in E. coli by using pET-32a vector, and the purified recombinant g-lysozyme shows lytic activity against Micrococcus lysodeikticus. (c) 2005 Elsevier B.V All rights reserved.
Resumo:
The Gobioninae are a group of morphologically and ecologically diverse Eurasian freshwater cyprinid fishes. The intergeneric relationships of this group are unresolved and the possible monophyly of this subfamily remains to be established. We used complete mitochondrial cytochrome b gene sequences from most genera within the gobionine group, in addition to a selection of cyprinid outgroups, to investigate the possible monophyly of this group and resolve the interrelationships within the group. Our results support the monophyly of the Gobioninae and identify four monophyletic groups within the subfamily; the Hemibarbus group, the Sarcocheilichthys group, the Gobio group, and the Pseudogobio group. The morphologically aberrant genera Gobiobotia, Xenophysogobio and Gobiocypris are included in the Gobioninae, with the latter a sister group of Gnathopogon.
Resumo:
The chondroitin AC lyase gene, cslA, was cloned for the first time from the fish bacterial pathogen F. columnare G(4). From the first transcription initiation site, the cslA extends 2620 nucleotides to the end of the 3' region. The open reading frame of cslA transcript has 2286 nucleotides encoding 762 amino acids with a 16 residues long signal peptide at the N-terminus. The gene, cslA was then successfully expressed in Escherichia coli and recombinant chondroitin AC lyase, rChonAC was purified, with its lytic activity analyzed. Zymography analysis copolymerized with chondroitin sulphate revealed the lytic activity of rChonAC and also the crude native ChonAC isolated from periplamic space of cultured F. columnare G(4). The low level of lytic activity observed in crude native ChonAC may be due possibly to the low level of expression of this gene in the cultured condition. The expression and the role of this virulence factor is of interest for further research on the pathogenesis of F. columnare.
Resumo:
Intron loss and its evolutionary significance have been noted in Drosophila. The current study provides another example of intron loss within a single-copy Dfak gene in Drosophila. By using polymerase chain reaction (PCR), we amplified about 1.3 kb fragment spanning intron 5-10, located in the position of Tyr kinase (TyK) domain of Dfak gene from Drosophila melanogaster species group, and observed size difference among the amplified DNA fragments from different species. Further sequencing analysis revealed that D. melanogaster and D. simulans deleted an about 60 bp of DNA fragment relative to other 7 Drosophila species, such as D. elegans, D. ficusphila, D. biarmipes, D. takahashii, D. jambulina, D. prostipennis and D. pseudoobscura, and the deleted fragment located precisely in the position of one intron. The data suggested that intron loss might have occurred in the Dfak gene evolutionary process of D. melanogaster and D. simulans of Drosophila melanogaster species group. In addition, the constructed phylogenetic tree based on the Dfak TyK domains clearly revealed the evolutionary relationships between subgroups of Drosophila melanogaster species group, and the intron loss identified from D. melanogaster and D. simulans provides a unique diagnostic tool for taxonomic classification of the melanogaster subgroup from other group of genus Drosophila.
Resumo:
The Botiinae have traditionally represented a subfamily of the Cobitidae. At present, the classification and phylogenetic relationships of the Botiinae are controversial. To address systematic and phylogenetic questions concerning this group, we sequenced the complete cytochrome b gene from 34 samples, of which 24 represented 13 species of the East Asian botiine fishes, while the other 10 were non-botiine loach species. For the 1140 bp sequences determined, 494 sites were variable ones, of which 424 were parsimony informative. With Myxocyprinus asiaticus as an outgroup, molecular phylogenetic trees were constructed using the neighbor-joining, maximum parsimony, maximum likelihood and Bayesian methods. All molecular phylogenetic trees revealed that botiine fishes form a monophyletic group and are distantly related to other loaches, suggesting that the Botiinae should be placed in their own family. Within the Botiinae, there are three genera; Botia, Parabotia, and Leptobotia, each genus forming a monophyletic group, with the genus Botia as the most ancestral split. Our molecular results are in agreement with morphological analyses of botiines, suggesting that Botia is the ancestral genus, while Leptobotia and Parabotia were resolved as more derived sister groups.
Resumo:
We report the cloning of a novel antimicrobial peptide gene, termed rtCATH_1, found in the rainbow trout, Oncorhynchus mykiss. The predicted 216-residue rtCATH_1 prepropeptide consists of three domains: a 22-residue signal peptide, a 128-residue cathelin-like region containing two identifiable cathelicidin family signatures, and a predicted 66-residue C-terminal cationic antimicrobial peptide. This predicted mature peptide was unique in possessing features of different known (mammalian) cathelicidin subgroups, such as the cysteine-bridged family and the specific amino-acid-rich family. The rtCATH_1 gene comprises four exons, as seen in all known mammalian cathelicidin genes, and several transcription factor binding sites known to be of relevance to host defenses were identified in the 5' flanking region. By Northern blot analysis, the expression of rtCATH_1 was detected in gill, head kidney, and spleen of bacterially challenged fish. Primary cultures of head kidney leukocytes from rainbow trout stimulated with lipopolysaccharide or poly(I (.) C) also expressed riCATH_1. A 36-residue peptide corresponding to the core part of the fish cathelicidin was chemically synthesized and shown to exhibit potent antimicrobial activity and a low hemolytic effect. Thus, rtCATH_1 represents a novel antimicrobial peptide gene belonging to the cathelicidin family and may play an important role in the innate immunity of rainbow trout.
Resumo:
The mitochondrial 16S ribosomal RNA gene is sequenced from 24 ingroups taxa, including 18 species from Labeoninae grouped in 13 genera. Phylogenetic analyses are subjected to neighbor joining, maximum parsimony, maximum likelihood and Bayesian analyses. Phylogenetic analysis indicates that Labeoninae is basically a monophyletic assemblage and can be divided into 2 major clades: one comprising the genera Cirrhinus, Crossocheilus and Garra; and the other consisting of the genera Labeo, Sinilabeo, Osteochilus, Pseudoorossocheilus, Parasinilabeo. Ptychidio, Semilabeo, Pseudogyricheilus, Rectori and Discogobio. According to our present analysis, the features such as the presence of the adhesive disc on the chin and the pharyngeal teeth in 2 rows used in the traditional taxonomy of Labeoninae provide scarce information for phylogeny of labeonine fishes.
Resumo:
A tumor necrosis factor receptor-associated factor 2 binding protein (T2BP) gene was isolated from the grass carp (Ctenopharyngodon idellus) by utilizing suppression subtractive hybridization (SSH) and rapid amplification of cDNA ends (RACE). The grass carp T2BP (GT2BP) gene contains an open reading frame of 579 nucleotide(s) (nt), encoding 193 amino acids, with 23 nt 5'-untranslated region and a long 3'-untranslated region of 434 nt including poly (A), 1 AUUUA motif and 4 AUUUUA motifs. No signal peptide has been detected in the predicted GT2BP, but a characteristic forkhead associated domain is present. The GT2BP mRNA shares 83% identity with the zebrafish DNA sequence, and they both have no introns in the genomic DNA. The putative transcription factor binding sites of GT2BP include two C/EBP alpha binding sites, and one c-Jun binding, one AP-1 binding, and one nuclear factor kappa B (NF kappa B) binding sites. Southern blot analysis revealed that the GT2BP was a single-copy gene. Individual difference was observed in GT2BP expression in examined organs of healthy grass carp. However, the expression of GT2BP in all examined organs in a fish with the highest copepod infection level and the significantly higher expression level in spleen and liver in infected fish may indicate its up-regulation with the parasite infection. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The family Sisoridae is one of the largest and most diverse Asiatic catfish families, most species occurring in the water systems of the Qinhai-Tibetan Plateau and East Himalayas. To date published morphological and molecular phylogenetics hypotheses of sisorid catfishes are part congruent, and there are some areas of significant disagreement with respect to intergeneric relationships. We used mitochondrial cytochrome b and 16S rRNA gene sequences to clarify existing gaps in phylogenetics and to test conflicting vicariant and dispersal biogeographical hypotheses of Chinese sisorids using dispersal-vicariance analysis and weighted ancestral area analysis in combination with palaeogeographical data as well as molecular clock calibration. Our results suggest that: (1) Chinese sisorid catfishes form a monophyletic group with two distinct clades, one represented by (Gagata (Bagarius, Glyptothorax)) and the other by (glyptosternoids, Pseudecheneis); (2) the glyptosternoid is a monophyletic group and Glyptosternum, Glaridoglanis, and Exostoma are three basal species having a primitive position among it; (3) a hypothesis referring to Pseudecheneis as the sister group of the glyptosternoids, based on morphological evidence, is supported; (4) the genus Pareuchiloglanis, as presently defined, is not monophyletic; (5) congruent with previous hypotheses, the uplift of Qinghai-Tibetan Plateau played a primary role in the speciation and radiation of the Chinese sisorids; and (6) an evolutionary scenario combining aspects of both vicariance and dispersal theory is necessary to explain the distribution pattern of the glyptosternoids. In addition, using a cytochrome b substitution rate of 0.91% per million years and 0.23% for 16S rRNA, we tentatively date that the glyptosternoids most possibly originated in Oligocene-Miocene boundary (19-24Myr), and radiated from Miocene to Pleistocene, along with a center of origin in the Irrawaddy-Tsangpo drainages and several rapid speciation in a relatively short time. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
To clarify cuttlefish phylogeny, mitochondrial cytochrome c oxidase subunit 1 (COI) gene and partial 16S rRNA gene are sequenced for 13 cephalopod species. Phylogenetic trees are constructed, with the neighbor-joining method. Coleoids are divided into two main lineages, Decabrachia and Octobrachia. The monophyly of the order Sepioidea, which includes the families Sepiidae, Sepiolidae and Idiosepiidae, is not supported. From the two families of Sepioidea examined, the Sepiolidae are polyphyletic and are excluded from the order. On the basis of 16S rRNA and amino acid of COI gene sequences data, the two genera (Sepiella and Sepia) from the Sepiidae can be distinguished, but do not have a visible boundary using COI gene sequences. The reason is explained. This suggests that the 16S rDNA of cephalopods is a precious tool to analyze taxonomic relationships at the genus level, and COI gene is fitter at a higher taxonomic level (i.e., family).
Resumo:
Using degenerate primers based on conserved regions of the UDP-glucose dehydrogenase (UDPGDH) gene, an initial 476-bp DNA fragment was amplified from the water-bloom forming cyanobacterium, Microcystis aeruginosa FACHB 905. TAIL-PCR and ligation-mediated PCR were used to amplify the flanking regions to isolate an about 2.5-kb genomic DNA fragment. Sequence analysis revealed an ORF encoding a putative 462 amino acid protein, designated Mud for Microcystis UDPGDH. The Mud amino acid sequence is closely related to UDPGDH sequences from cyanobacterium Synechocystis PCC6803 (73% identity, 81% similarity), and bacterium Bacillus subtilis (51% identity and 67% similarity). The cloned mud gene was expressed in Escherichia coli using the pGEX-4T-1 fusion expression vector system to generate a GST-Mud fusion protein that exhibited UDPGDH activity. The cytosolic fraction of M aeruginosa FACHB 905 was subjected to Western analysis with an anti-Mud antibody, which revealed a single band of approximately 49 kD, consistent with the deduced molecular mass of the enzyme. The Mud protein could thus be characterized as a UDP-glucose dehydrogenase, which was a key enzyme for polysaccharide synthesis and has, for the first time, been studied in algae.
Resumo:
The expression vector containing phbB and ble genes was constructed and transformed into cell-wall-deficient strain Chlamydomonas reinhardtii CC-849 by the glass-head method. The transgenic alga was selected and maintained in the TAP agar plates containing 10 mug/mL Zeomycin. Transgenic alga, which could express phbB at the transcriptional level, was obtained and further confirmed with PCR, Southern blot and RT-PCR-DNA hybridization analysis.
Resumo:
A viperin gene has been cloned from the mandarin fish (Siniperca chuatsi). From the first transcription initiation site, the mandarin fish viperin gene extends 3163 nucleotides to the end of the 3' untranslated region, and it contains six exons and five introns. The open reading frame of the viperin transcript has 1062 nucleotides which encode a 354 amino acid peptide. The amino acid sequence of mandarin fish viperin shows high identities with its homologues in teleosts and mammals except for the first 70 amino acids. A characteristic feature in the viperin promoter region was the presence of five putative ICSBP (IRF8) binding sites and one IRFI binding site. The viperin gene expressed mainly in lymphoid tissues before stimulation, but its expression can be examined in almost all the organs investigated after stimulation with virus or Poly I:C. The expression pattern and promoter sequence may be considered as the indirect evidence that the transcription of viperin is regulated by interferons or interferon induced genes. (C) 2004 Elsevier B.V. All rights reserved.