502 resultados para GOLD ELECTRODE
Resumo:
In this paper, microperoxidase-11 (MP-11) was immobilized on glassy carbon electrode surface modified with chitosan by physical adsorption. The direct electrochemistry and the electrocatalytic behaviours to O-2 and the H2O2 of MP-11 on glassy carbon electrode modified with chitosan were characterized by cyclic voltammetry. The results indicate that MP-11 on modified electrode displays a quasi-reversible electrochemical process coupled with proton transfer in the phosphate buffer solutions(pH = 7.12). Direct electrochemical reaction of MP-11 on modified electrode has been realized. MP-11 on modified electrode can catalyze reduction for O-2 and H2O2. Both of the catalytic reductions are surface-controlled electrochemical process.
Resumo:
Multiwalled carbon nanotubes@SnO2-Au (MWCNTs@SnO2-Au) composite was synthesized by a chemical route. The structure and composition of the MWCNTs@SnO2-Au composite were confirmed by means of transmission electron microscopy, X-ray photoelectron and Raman spectroscopy. Due to the good electrocatalytic property of MWCNTs@SnO2-Au composite, a glucose biosensor was constructed by absorbing glucose oxidase (GOD) on the hybrid material. A direct electron transfer process is observed at the MWCNTs@SnO2-Au/GOD-modified glassy carbon electrode. The glucose biosensor has a linear range from 4.0 to 24.0 mM, which is suitable for glucose determination by real samples. It should be worthwhile noting that, from 4.0 to 12.0 mM, the cathodic peak currents of the biosensor decrease linearly with increasing the glucose concentrations in human blood. Meanwhile, the resulting biosensor can also prevent the effects of interfering species.
Resumo:
A simple and environment friendly chemical route for detecting latent fingermarks by one-step single-metal nanoparticles deposition method (SND) was achieved successfully on several non-porous items. Gold nanoparticles (AuNPs) synthesized using sodium borohydride as reducing agent in the presence of glucose, were used as working solution for latent fingermarks detection. The SND technique just needs one step to obtain clear ridge details in a wide pH range (2.5-5.0), whereas the standard multi-metal deposition (MMD) technique requires six baths in a narrow pH range (2.5-2.8). The SND is very convenient to detect latent fingermarks in forensic scene or laboratory for forensic operators. The SND technique provided sharp and clear development of latent fingermarks, without background staining, dramatically diminished the bath steps.
Resumo:
Preparation of monodispersed platinum nanoparticles with average size 2.0 nm stabilized by amino-terminated ionic liquid was demonstrated. The resulting platinum nanoparticles (Pt-IL) retained long-term stability without special protection. The Pt-IL nanoparticles exhibited high electrocatalytic activity toward reduction of oxygen and oxidation of methanol. Rotating disk electrode voltammetry and rotating ring-disk electrode voltammetry confirmed that the Pt-IL films could catalyze an almost four-electron reduction of dioxygen to water.
Resumo:
Gold nanoparticles stabilized by amino-terminated ionic liquid (Au-IL) have been in situ noncovalently deposited on poly(sodium 4-styrene-sulfonate) (PSS)-functionalized multiwalled carbon nanotubes (MWCNTs) to form a MWCNTs/PSS/Au-IL nanocomposite. PSS can interact with MWCNTs through hydrophobic interaction. Amino-terminated ionic liquid was applied to reduce aqueous HAuCl4, and the resulting gold nanoparticles were attached to the PSS-functionalized MWCNTs simultaneously. Most gold nanoparticles dispersed well on the functionalized MWCNTs. Transmission electron microscopy, Raman and X-ray photoelectron spectroscopy were used to confirm the composition and structure of the nanocomposites. The resulting MWCNTs/PSS/Au-IL composite exhibits good electrocatalysis toward oxygen and hydrogen peroxide reduction.
Resumo:
We have demonstrated the design of a new type fluorescent assay based on the inner filter effect (IFE) of metal nanoparticles (NPs), which is conceptually different from the previously reported metal NPs-based fluorescent assays. With a high extinction coefficient and tunable plasmon absorption feature, metal NPs are expected to be capable of functioning as a powerful absorber to tune the emission of the fluorophore in the IFE-based fluorescent assays. In this work, we presented two proof-of-concept examples based on the IFE of Au NPs by choosing MDMO-PPV as a model fluorophore, whose fluorescence could be tuned by the absorbance of Au NPs with a much higher sensitivity than the corresponding absorbance approach.
Resumo:
Inorganic nanoparticles (NPs) with attractive electronic, optical, magnetic, thermal and catalytic properties have attracted great interest due to their important applications in physics, chemistry, biology, medicine, materials science and interdisciplinary fields. Biomolecule-NP hybrid systems, which combine recognition and catalytic properties of biomolecules with electronic, optical, magnetic and catalytic properties of NPs, are particularly new materials with synergistic properties originating from the components of the hybrid composites. The biomolecule-NP hybrid system has excellent prospects for interfacing biological recognition events with electronic signal transduction so as to design a new generation of bioelectronic devices with high sensitivity.
Resumo:
We report a simple fluorescent method for sensitive cyanide detection based on the dissolution of Rhodamine B-adsorbed gold nanoparticles by cyanide.
Resumo:
We report a sensitively amplified electrochemical aptasensor using adenosine triphosphate (ATP) as a model. ATP is a multifunctional nucleotide thatis most important as a "molecular currency" of intracellular energy transfer. In the sensing process, duplexes consisting of partly complementary strand (PCS1), ATP aptamer (ABA) and another partly complementary strand (PCS2) were immobilized onto Au electrode through the 5'-HS on the PCS1. Meanwhile, PCS2 was grafted with the Au nanoparticles (AuNPs) to amplify the detection signals. In the absence of ATP, probe methylene blue (MB) bound to the DNA duplexes and also bound to guanine bases specifically to produce a strong differential pulse voltammetry (DPV) signal. But when ATP exists, the ABA-PCS2 or ABA-PCS1 part duplexes might be destroyed, which decreased the amount of MB on the electrode and led to obviously decreased DPV signal.
Resumo:
In this work, a new fluorescent method for sensitive detection of biological thiols in human plasma was developed using a near-infrared (NIR) fluorescent dye, FR 730. The sensing approach was based on the strong affinity of thiols to gold and highly efficient fluorescent quenching ability of gold nanoparticles (Au NPs). In the presence of thiols, the NIR fluorescence would enhance dramatically due to desorption of FR 730 from the surfaces of Au NPs, which allowed the analysis of thiol-containing amino acids in a very simple approach. The size of Au NPs was found to affect the fluorescent assay and the best response for cysteine detection was achieved when using Au NPs with the diameter of 24 nm, where a linear range of 2.5 x 10(-8) M to 4.0 x 10(-6) M and a detection limit of as low as 10 nM was obtained. This method also demonstrated a high selectivity to thiol-containing amino acids due to the strong affinity of thiols to gold.
Resumo:
In this report, gold nanoparticles (AuNPs) labeled by Raman reporters (AuNPs-R6G) were assembled on glass and used as the seeds to in situ grow silver-coated nanostructures based on silver enhancer solution, forming the nanostructures of AuNPs-R6G@Ag, which were characterized by scanning electron microscopy (SEM) and UV-visible spectroscopy. More importantly, the obtained silver-coated nanostructures can be used as a surface enhancement Raman scattering (SERS) substrate. The different SERS activities can be controlled by the silver deposition time and assembly time of AuNPs-R6G on glass. The results indicate that the maximum SERS activity could be obtained on AuNPs-R6G when these nanostructures were assembled on glass for 2 h with silver deposition for 2 min.
Resumo:
In this article, a simple and novel photochemical synthesis of different gold nanostructures is proposed using solar radiation. This method is rapid, convenient and of low cost, and can be performed under ambient conditions. By adjusting the concentration of sodium acetate (NaAc), different morphologies of the products can be easily obtained. Without NaAc, the products obtained are mainly polyhedral gold particles; lower concentration of NaAc (0.05 and 0.1 M) accelerates the formation of flowerlike gold nanostructures; while higher concentration of NaAc (0.5 M) facilitates the formation of a variety of gold nanowires and nanobelts. It is found that the morphology change of gold nanaostructures is the result of the synergistic effect of poly(diallyl dimethylammonium) chloride (PDDA), Ac- ions, and the pH value. In addition, the different gold nanostructures thus obtained were used as substrates for surface-enhanced Raman scattering (SERS) with p-aminothiophenol (p-ATP) as the probe molecule.
Resumo:
In this work, rapid fabrication of Au nanoparticle (Au NP) films has been simply achieved by alternate adsorption of citrate-stabilized Au NPs and poly(diallyldimethylammonium chloride) with the aid of centrifugal force. In contrast to conventional electrostatic assembly, we carried out the assembly process in a centrifuge with a rotating speed of 4000 rpm, where centrifugal force can be imposed on Au NPs. Scanning electron microscopy and cyclic voltammetry were employed to characterize the assembly procedure and the thus-prepared thin solid films. Our results demonstrate that centrifugal force can promote the assembly of Au NPs and therefore enable the rapid fabrication of functional Au NP films.
Resumo:
A method to synthesize Fe3O4 core/Au shell submicrometer structures with very rough surfaces on the nanoscale is reported. The Fe3O4 particles were first modified with uniform polymers through the layer-by-layer technique and then adsorbed a lot of gold nanoseeds for further Au shell formation. The shell was composed of a large number of irregular nanoscale An particles arranged randomly, and there were well-defined boundaries between these Au nanoparticles. The Fe3O4 core/Au shell particles showed strong plasmon resonance absorption in the near-infrared range, and can be separated quickly from solution by an external magnet.
Resumo:
Morphological control of nanomaterials is of great interest due to their size and shape-dependent chemical and physical properties and very important applications in many fields such as biomedicine, sensors, electronics and others. In this paper, we reported a simple strategy for synthesizing gold nanowire assembling architecture at room temperature. It is found that two important factors, the proper volume ratio of ethanol to water and poly(vinyl pyrrolidone) (PVP), will play important roles in synthesizing flower-like short gold nanowire assembling spheres. Furthermore, the obtained flower-like gold assembling spheres with high surface-to-volume ratio have been employed as enhancing materials for electrochemical sensing H2O2. The present electrochemical sensing platform exhibited good electrocatalytic activity towards the reduction of H2O2. The detection limit for H2O2 was found to be 1.2 mu M, which was lower than certain enzyme-based biosensors.