305 resultados para Exchange reactions.
Resumo:
Uptake and release of carbon in grassland ecosystems is very critical to the global carbon balance and carbon storage. In this study, the dynamics of net ecosystem CO2 exchange (FNEE) of two grassland ecosystems were observed continuously using the eddy covariance technique during the growing season of 2003. One is the alpine shrub on the Tibet Plateau, and the other is the sem-arid Leymus chinensis steppe in Inner Mongolia of China. It was found that the FNEE of both ecosystems was significantly depressed under high solar radiation. Comprehensive analysis indicates that the depression of FNEE in the L. chinensis steppe was the results of decreased plant photosynthesis and increased ecosystem respiration (R-eco) under high temperature. Soil water stress in addition to the high atmospheric demand under the strong radiation was the primary factor limiting the stomatal conductance. In contrast, the depression of FNEE in the alpine shrub was closely related to the effects of temperature on both photosynthesis and ecosystem respiration, coupled with the reduction of plant photosynthesis due to partial stomatal closure under high temperature at mid-day. The R,c of the alpine shrub was sensitive to soil temperature during high turbulence (u* > 0.2 m s(-1)) but its FNEE decreased markedly when the temperature was higher than the optimal value of about 12 degrees C. Such low optimal temperature contrasted the optimal value (about 20 degrees C) for the steppe, and was likely due to the acclimation of most alpine plants to the long-term low temperature on the Tibet Plateau. We inferred that water stress was the primary factor causing depression of the FNEE in the semi-arid steppe ecosystem, while relative high temperature under strong solar radiation was the main reason for the decrease of FNEE in the alpine shrub. This study implies that different grassland ecosystems may respond differently to climate change in the future. (c) 2006 Elsevier B.V All rights reserved.
Resumo:
Three years of eddy covariance measurements were used to characterize the seasonal and interannual variability of the CO2 fluxes above an alpine meadow (3250 m a.s.l.) on the Qinghai-Tibetan Plateau, China. This alpine meadow was a weak sink for atmospheric CO2, with a net ecosystem production (NEP) of 78.5, 91.7, and 192.5 g C m(-2) yr(-1) in 2002, 2003, and 2004, respectively. The prominent, high NEP in 2004 resulted from the combination of high gross primary production (GPP) and low ecosystem respiration (R-e) during the growing season. The period of net absorption of CO2 in 2004, 179 days, was 10 days longer than that in 2002 and 5 days longer than that in 2003. Moreover, the date on which the mean air temperature first exceeded 5.0 degrees C was 10 days earlier in 2004 (DOY110) than in 2002 or 2003. This date agrees well with that on which the green aboveground biomass (Green AGB) started to increase. The relationship between light-use efficiency and Green AGB was similar among the three years. In 2002, however, earlier senescence possibly caused low autumn GPP, and thus the annual NEP, to be lower. The low summertime R-e in 2004 was apparently caused by lower soil temperatures and the relatively lower temperature dependence of R-e in comparison with the other years. These results suggest that (1) the Qinghai-Tibetan Plateau plays a potentially significant role in global carbon sequestration, because alpine meadow covers about one-third of this vast plateau, and (2) the annual NEP in the alpine meadow was comprehensively controlled by the temperature environment, including its effect on biomass growth.
Resumo:
To reveal the potential contribution of grassland ecosystems to climate change, we examined the energy exchange over an alpine Kobresia meadow on the northeastern Qinghai-Tibetan Plateau. The annual pattern of energy exchange showed a clear distinction between periods of frozen soil with the daily mean soil temperature at 5 cm (T-s5 ≤ 0 ° C) and non-frozen soil (T-s5 > 0 ° C). More than 80% of net radiation was converted to sensible heat (H) during the frozen soil period, but H varied considerably with the change in vegetation during the non-frozen soil period. Three different sub-periods were further distinguished for the later period: (1) the pre-growth period with Bowen ratio (β) > 1 was characterized by a high β of 3.0 in average and the rapid increase of net radiation associated with the increases of H, latent heat (LE) and soil heat; (2) during the Growth period when β ≤ 1, the LE was high but H fluxes was low with β changing between 0.3 and 0.4; (3) the post-growth period with average β of 3.6 when H increased again and reached a second maximum around early October. The seasonal pattern suggests that the phenology of the vegetation and the soil water content were the major factors affecting the energy partitioning in the alpine meadow ecosystem. © 2005 Elsevier B.V. All rights reserved.
Resumo:
We used the eddy covariance method to measure the M exchange between the atmosphere and an alpine meadow ecosystem (37degrees29-45'N, 101degrees12-23'E, 3250m a.s.l.) on the Qinghai-Tibetan Plateau, China in the 2001 and 2002 growing seasons. The maximum rates Of CO2 uptake and release derived from the diurnal course Of CO2 flux (FCO2) were -10.8 and 4.4 mumol m(-2) s(-1), respectively, indicating a relatively high net carbon sequestration potential as compared to subalpine coniferous forest at similar elevation and latitude. The largest daily CO2 uptake was 3.9 g cm(-2) per day on 7 July 2002, which is less than half of those reported for lowland grassland and forest at similar latitudes. The daily CO2 uptake during the measurement period indicated that the alpine ecosystem might behave as a sink of atmospheric M during the growing season if the carbon lost due to grazing is not significant. The daytime CO2 uptake was linearly correlated with the daily photosynthetic photon flux density each month. The nighttime averaged F-CO2 showed a positive exponential correlation with the soil temperature, but apparently negative correlation with the soil water content. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The Ultrahigh Pressure Metamorphic (UHPM) eclogite, which was resulted from deep subduction of crustal continent, is very significant due to its continental dynamic implications. Further more, this kind of rocks experienced great P-T, fluid and stresses changes during its forming and exhumation, causing mineral reactions occur intensively, which resulted in a lot of fantastic micro-texture. The micro-texture was preserved duo to a rapid exhumation of the eclogite. This PhD dissertation takes such micro-textures in 10 Donghai eclogite samples South Sulu UHPM terrene, as research object to reveal the transformation of the eclogite to amphibolite. Microscope and Scanning Electron Microscope were employed to observe the micro-texture. Basing on microprobe analysis of minerals, the ACF projections and iso-con analysis were used to uncover the mineral reactions during the transformation. Micro-texture observation (both of Microcopy and Electron Scanning Microscope), demonstrated: l.The peak mineral assemblage of the researched Donghai eclogites is garnet + omphacite + rutile (+ kyanite + aptite +coesite). 2.The transformation of the Donghai eclogite to amphibolite can be divided into two stages: The earlier one is Symplectization, resulting in the forming of diopside + albite (+magnetite) symplectite that occurred only along the boundary between two adjacent omphacite grains. Other minerals were not involved in such reaction. The latter stage is Fluid-Infiltration of the eclogite, which was caused by fluid-intrusion. The infiltration is demonstrated by amphibolization of the symplectite, decomposition of garnet and the forming of some hydrous minerals such as phengite and epidote, and resulted in an amphibole + plagioclase + phengite + epidote or ziosite assemblage. Basing on microprobe analysis of the minerals, ACF projections indicated: In the ACF diagrams, the two joint lines of peak Grt + Omp and Dio + Ab crossed at Omp projection-point, indicating that the garnet had not taken part in the forming reaction of the Dio + Ab symplectite, just like that had been pointed out by micro-texture observation. In the ACF diagrams, the hornblende + plagioclase + epidote + phengite quadrilateral intersected with Dio + Ab + Grt triangle, demonstrating that the hydrous mineral assemblage was formed by fluid infiltration through garnet, diopside and albite. Iso-con (mass-balance) analysis of the symplectization and infiltration reveals: 1.The symplectization of the omphacite has a very complex mass exchange: Some symplectite gained only silicon from its surroundings; and some one requires Ca, but provides Na to its surroundings; while other symplectite provides Ca, Mg and Fe to its surroundings. 2.The infiltration cause variable mass exchanges occurring among the garnet, diopside and albite: In some eclogite sample, no mass, except H2O, exchange occurred during the infiltration. Meanwhile, there was not any hydrous mineral except hornblende formed in the sample accordingly. In some samples, the mass exchange among the three minerals is complex: amphibolization of the diopside in a symplectite gained Al from garnet, and provided Si and Ca to its surrounding, resulting in a Si, Ca and Al-rich fluid. Correspondingly, there was a lot of phengite and ziosite occurred in the sample. In other samples, the amphibolization of a symplectite provided Fe and Mg besides Si and Ca to its surrounding while gained Al. In such kind of sample, epidote occurred within the hydrous mineral assemblage. Synthesizing the micro-texture observation, ACF analysis and iso-con analysis, we deduced the transformation procedure as following: 1. A symplectite after an omphacite was resulted by one, or two, or all of following mineral reactions together: Jd (Ca-Tsch) +SiO2=Ab (An) (1) 4NaA IS i.A+CaO=2NaAlS i308+Na20+CaAl2S 1208 (2) 2NaAlSi2OB (Jd in Omp)+CaMgSi;,0B(Dio in Omp)-2NaAlSi:,O"(Ab)+Ca0+Mg0 (3) 2(CaAl2Si0fi) (Ca-tsch in Omp)+CaFeSi2O6(Hed in 0mp)-H>2CaAl2Si208(An)+Ca0 + FeO (4) A CO2-rich fluid is suggested as cataclysm for the above reactions, which largely increased the mobility of Ca, Mg and Na resulted from reaction (2), (3) and (4). The immobile product Fe2* combined with rutile to form ilmenite, resulting in rutile + ilmenite symplectite. Or, the Fe was precipitated as hematite locally. A procedure of the fluid infiltration as following is suggested: I .A hydrous fluid intruded into the eclogite, and reacted first with garnet to form hornblende and extra Al, resulting in a hornblende film around the garnet grain and an Al-rich fluid. 2.The Al-rich fluid infiltrated through the symplectite, OH" and part of the Al in the fluid combined with Dio while some Si and Ca in the Dio were dissolved made the Dio transferred to amphibole. Meanwhile, plagioclase-type cation exchange occurred between the fluid and plagioclase in the symplectite, making the plagioclase have a higher An-content. 3.Above infiltration and cation exchange resulted in an Al, Si, Ca (and K, providing the primary hydrous fluid contain K)-rich fluid. 4.Under suitable conditions, the solute in the fluid precipitated to form phengite firstly. After the K element in the fluid was consumed up, ziosite or epidote was formed. If the fluid did not contain any K. element, only ziosite or epidote was precipitated. For those eclogites, where all omphacite had been replaced by symplectite before infiltration, neither element exchange occurred, nor did phengite or epidote form during the infiltration. At the last stage, the garnet was oxidized and breakdown: garnet + H2O = epidote + hornblende + hematite, due to more and more fluid intruding into the eclogite. At this time, all the peak minerals were replaced by amphibolite-phase ones, and the eclogite transformed to an amphibolite completely. Tentative pressure calculation indicates that the infiltration occurred at 3-6kbar (about 10-20km depth), where the deformation mechanics transformed from brittle to ductile yield. At such depth, the surface water can permeate the rocks through fault system, causing a rapid cooling.
Resumo:
Separation of the acidic compounds in the ion-exchange capillary electrochromatograph (IE-CEC) with strong anion-exchange packing as the stationary phase was studied. It was observed that the electroosmotic flow (EOF) in strong anion-exchange CEC moderately changed with increase of the eluent ionic strength and decrease of the eluent pH, but the acetonitrile concentration in the eluent had almost no effect on the EOF. The EOF in Strong anion-exchange CEC with eluent of low pH value was much larger than that in RP-CEC with Spherisorb-ODS as the stationary phase. The retention of acidic compounds on the strong anion-exchange packing was relatively weak due to only partial ionization of them, and both chromatographic and electrophoretic processes contributed to separation. It was observed that the retention values of acidic compounds decreased with the increase of phosphate buffer and acetonitrile concentration in the eluent as well as the decrease of the applied voltage, and even the acidic compounds could elute before the void time. These factors also made an important contribution to the separation selectivity for tested acidic compounds, which could be separated rapidly with high column efficiency of more than 220 000 plates/m under the optimized separation conditions. (C) 2000 Elsevier Science BN. All rights reserved.
Resumo:
Separation of small peptides on ion-exchange capillary electrochromatography (IE-CEC) with strong cation-exchange packing (SCX) as stationary phase was investigated. It was observed that the number of theoretical plates for small peptides varied from 240 000 to 460 000/m, and the relative standard deviation for t(0) and the migration time of peptides were less than 0.57% and 0.27%, respectively for ten consecutive runs. Unusually high column efficiency has been explained by the capillary electrophoretic stacking and chromatofocusing phenomena during the injection and separation of positively charged peptides. The sample buffer concentration had a marked effect on the column efficiency and peak area of the retained peptides. The influences of the buffer concentration and pH value as well as the applied voltage on the separation were investigated. It has been shown that the electrostatic interaction between the positively charged peptides and the SCX stationary phase played a very important role in IE-CEC, which provided the different separation selectivity from those in the capillary electrophoresis and reversed-phase liquid chromatography. A fast separation of ten peptides in less than 3.5 min on IE-CEC by adoption of the highly applied voltage was demonstrated. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
A novel mode of capillary electrochromatography (CEC), called dynamically modified strong cation-exchange CEC (DMSCX-CEC), is described in this paper. A column packed with a strong cation-exchange (SCX) packing material was dynamically modified with a long-chain quaternary ammonium salt, cetyltrimethylammonium bromide (CTAB), which was added to the mobile phase. CTAB ions were adsorbed onto the surface of the SCX packing material, and the resulting hydrophobic layer on this packing was used as the stationary phase. Using the dynamically modified SCX column, neutral solutes were separated with the CEC mode. The highest number of theoretical plates obtained was about 190 000/m, and the relative standard deviations (RSD's) for migration times and capacity factors of alkylbenzenes were less than 1.0% and 2.0% for five consecutive runs, respectively. The effects of CTAB and methanol concentrations and the pH value of the mobile phase on the electroosmotic flow and the separation mechanism were investigated. Excellent simultaneous separation of the basic and neutral solutes in DMSCX-CEC with a high-pH mobile phase was obtained, A mixture containing the acidic, basic, and neutral compounds was well separated in this mode with a low-pH mobile phase; however, peak tailing for basic compounds was observed in this mobile phase.