427 resultados para Energy Transfer


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A series of oligoaniline-functionalized mono- and bis-topic terpyridine ligands, i.e. C6H5[N(R)C6H4](n)TPY (R = H, butyl, tert-butyloxycarbonyl; n = 1-4; TPY = 2,2':6',2"-terpyridyl) and TPYC6H4[N(R)C6H4](m)TPY (R = H, tert-butyloxycarbonyl; m = 2, 4), and the corresponding monoand bis-nuclear ruthenium(II) complexes have been synthesized and verified. The spectroscopic results indicate that two kinds of pi-pi* transitions from TPY and oligoaniline fragments of ligands strongly shift to lower energy, and the metal-to-ligand charge-transfer transition ((MLCT)-M-1) bands of all obtained complexes are considerably red-shifted (Delta lambda(max) = 22-64 nm) and their intensities become much more intense (approximately 4-6 times), compared with those of the reported complex [Ru(TPY)(2)](2+). Moreover, the spectroscopic properties of the ligands and complexes with longer oligoaniline units (n = 3, 4) are markedly influenced by the external stimulus, such as the oxidation and proton acid doping.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have demonstrated the design of a new type fluorescent assay based on the inner filter effect (IFE) of metal nanoparticles (NPs), which is conceptually different from the previously reported metal NPs-based fluorescent assays. With a high extinction coefficient and tunable plasmon absorption feature, metal NPs are expected to be capable of functioning as a powerful absorber to tune the emission of the fluorophore in the IFE-based fluorescent assays. In this work, we presented two proof-of-concept examples based on the IFE of Au NPs by choosing MDMO-PPV as a model fluorophore, whose fluorescence could be tuned by the absorbance of Au NPs with a much higher sensitivity than the corresponding absorbance approach.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel class of hosts suitable for solution processing has been developed based on a conjugated dendritic scaffold. By increasing the dendron generation, the highest occupied molecular orbital (HOMO) energy level can be tuned to facilitate hole injection, while the triplet energy remains at a high level, sufficient to host high-energy-triplet emitters. A power-efficient blue-electrophosphorescent device based on H2 (see figure) is presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report a sensitively amplified electrochemical aptasensor using adenosine triphosphate (ATP) as a model. ATP is a multifunctional nucleotide thatis most important as a "molecular currency" of intracellular energy transfer. In the sensing process, duplexes consisting of partly complementary strand (PCS1), ATP aptamer (ABA) and another partly complementary strand (PCS2) were immobilized onto Au electrode through the 5'-HS on the PCS1. Meanwhile, PCS2 was grafted with the Au nanoparticles (AuNPs) to amplify the detection signals. In the absence of ATP, probe methylene blue (MB) bound to the DNA duplexes and also bound to guanine bases specifically to produce a strong differential pulse voltammetry (DPV) signal. But when ATP exists, the ABA-PCS2 or ABA-PCS1 part duplexes might be destroyed, which decreased the amount of MB on the electrode and led to obviously decreased DPV signal.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, a new fluorescent method for sensitive detection of biological thiols in human plasma was developed using a near-infrared (NIR) fluorescent dye, FR 730. The sensing approach was based on the strong affinity of thiols to gold and highly efficient fluorescent quenching ability of gold nanoparticles (Au NPs). In the presence of thiols, the NIR fluorescence would enhance dramatically due to desorption of FR 730 from the surfaces of Au NPs, which allowed the analysis of thiol-containing amino acids in a very simple approach. The size of Au NPs was found to affect the fluorescent assay and the best response for cysteine detection was achieved when using Au NPs with the diameter of 24 nm, where a linear range of 2.5 x 10(-8) M to 4.0 x 10(-6) M and a detection limit of as low as 10 nM was obtained. This method also demonstrated a high selectivity to thiol-containing amino acids due to the strong affinity of thiols to gold.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, hydrothermal synthesized Fe3O4 microspheres have been encapsulated with nonporous silica and a further layer of ordered mesoporous silica through a simple sol-gel process. The surface of the outer silica shell was further functionalized by the deposition of YVO4:Eu3+ phosphors, realizing a sandwich structured material with mesoporous, magnetic and luminescent properties. The multifunctional system was used as drug carrier to investigate the storage and release properties using ibuprofen (IBU) as model drug by the surface modification. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), Fourier transform infrared spectroscopy (FT-IR), N-2 adsorption/desorption, photoluminescence (PL) spectra, and superconducting quantum interference device (SQUID) were used to characterized the samples.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Luminescent, mesoporous, and bioactive europium-doped hydroxyapatite (HAp:Eu3+) nanofibers and microbelts have been prepared by a combination of sol-gel and electrospinning processes with a cationic surfactant as template. The obtained multifunctional hydroxyapatite nanofibers and microbelts, which have mesoporous structure and red luminescence, were tested as drug carriers by investigating their drug-storage/release properties with ibuprofen (IBU) as model drug. X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution (HR) TEM, FTIR spectroscopy, N-2 adsorption/desorption, photoluminescence (PL) spectra, and UV/Vis spectroscopy were used to characterize the structural, morphological, textural, and optical properties of the resulting samples.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lu2O3:Yb3+/Er3+/Tm3+ nanocrystals have been successfully synthesized by a solvothermal process followed by a subsequent heat treatment at 800 degrees C. Powder X-ray diffraction, transmission electron microscopy, upconversion photoluminescence spectra, and kinetic decay were used to characterize the samples. Under single-wavelength diode laser excitation of 980 nm, the bright blue emissions of Lu2O3:Yb3+, Tm3+ nanocrystals near 477 and 490 nm were observed due to the (1)G(4)-> H-3(6) transition of Tm3+. The bright green UC emissions of Lu2O3:Er3+ nanocrystals appeared near 540 and 565 nm were observed and assigned to the H-2(11/2)-> I-4(15/2) and S-4(3/2)-> I-4(15/2) transitions, respectively, of Er3+. The ratio of the intensity of green luminescence to that of red luminescence decreases with an increase of concentration of Yb3+ in Lu2O3:Er3+ nanocrystals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One-dimensional CaWO4 and CaWO4:Tb3+ nanowires and nanotubes have been prepared by a combination method of sol-gel process and electrospinning. X-Ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL), low voltage cathodoluminescence (CL) and time-resolved emission spectra, as well as kinetic decays were used to characterize the resulting samples. The results of XRD, FT-IR, TG-DTA indicate that the CaWO4 and CaWO4: Tb3+ samples begin to crystallize at 500 degrees C with the scheelite structure. Under ultraviolet excitation and low-voltage electron beams excitation, the CaWO4 samples exhibit a blue emission band with a maximum at 416 nm originating from the WO42- groups, while the CaWO4:Tb3+ samples show the characteristic emission of Tb3+ corresponding to (D4-F6,5,4,3)-D-5-F-7 transitions due to an efficient energy transfer from WO42- to Tb3+.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One-dimensional X-1-Y2SiO5:Ce3+ and -Tb3+ nanofibers and quasi-one-dimensional X-1-Y2SiO5:Ce3+ and -Tb3+ microbelts have been prepared by a simple and cost-effective electrospinning process. X-ray powder diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry, transmission electron microscopy, high-resolution transmission electron microscopy, photoluminescence (PL), and cathodoluminescence spectra were used to characterize the samples. SEM results indicate that the as-prepared fibers and belts are smooth and uniform with a length of several tens to hundreds of micrometers, whose diameters decrease after being annealed at 1000 degrees C for 3 h. Under ultraviolet excitation and low-voltage electron beam excitation, the doped rare earth ions show their characteristic emission, that is, Ce3+ 5d-4f and Tb3+ D-5(4)-F-7(J) (J = 6, 5 4, 3) transitions, respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One-dimensional CaMoo(4):Ln(3+) (Ln = Eu, Tb, Dy) nanofibers have been prepared by a combination method of sol-gel and electrospinning process. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL), and low voltage cathodoluminescence (CL) as well as kinetic decays were used to characterize the resulting samples. SEM and TEM analyses indicate that the obtained precursor fibers have a uniform size, and the as-formed CaMoO4:Ln(3+) nanofibers consist of nanoparticles. Under ultraviolet excitation, the CaMoO4 samples exhibit a blue-green emission band with a maximum at 500 nm originating from the MoO42- groups. Due to an efficient energy transfer from molybdate groups to dopants, CaMoO4:Ln(3+) phosphors show their strong characteristic emission under ultraviolet excitation and low-voltage electron beam excitation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we report a facile route which is based Oil tuning doping concentration of Mn2+ ions in ZnS nanocrystals, to achieve deliberate color modulation from blue to orange-yellow under single-wavelength excitation. X-ray diffraction (XRD), transmission electron microscopy (TEM), as well as photoluminescence (PL) spectra were employed to characterize the obtained samples. In this process, the relative emission intensities of both ZnS host (blue) and Mn2+ dopant (orange-yellow) are sensitive to the Mn2+ doping concentration, due to the energy transfer from ZnS host to Mn2+ dopant. As a result of fine-tuning of these two emission components, white emission can be realized for Mn2+-doped ZnS nanocrystals. Furthermore.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A general and facile ultrasonic irradiation method has been established for the synthesis of the lanthanide orthovanadate LnVO(4) (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) nanoparticles from an aqueous solution of Ln(NO3)(3) and NH4VO3 without any surfactant or template. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), and photoluminescence (PL) spectra as well as kinetic decays were employed to characterize the as-prepared products. Ultrasonic irradiation has a strong effect on the morphology of the LnVO(4) nanoparticles. The SEM and TEEM images illustrate that the as-formed LnVO(4) particles have a spindle-like shape with an equatorial diameter of 30-70 nm and a length of 100-200 am, which are the aggregates of even.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gd2MoO6:Eu3+ nanofibers and nanobelts have been prepared by a combination method of the sol-gel process and electrospinning. X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy, photoluminescence, and low voltage cathodoluminescence as well as kinetic decays were used to characterize the resulting samples. The results of XRD and FTIR indicate that the Gd2MoO6:Eu3+ samples have crystallized at 600 degrees C with the monoclinic (alpha) structure. The SEM and TEM results indicate that the as-formed precursor fibers and belts are uniform and that the as-prepared nanofibers and nanobelts consist of nanoparticles. Gd2MoO6:Eu3+ phosphors show their strong characteristic emission under UV excitation (353 nm) and low voltage electron-beam excitation (3 kV), making the materials have potential applications in fluorescent lamps and field-emission displays.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

White-light emission is achieved from a single layer of diblock copolymer micelles containing green- and red-light-emitting dyes in the separate micellar cores and blue-light-emitting polymer around their periphery, in which fluorescence resonance energy transfer between fluorophores is inhibited due to micelle isolation, resulting in simultaneous emission of these three species.