500 resultados para ELECTROCHEMICAL PROBE
Resumo:
Silver underpotential deposition (UPD)-induced surface atomic rearrangement of polycrystalline gold nanofilms was probed with use of surface plasmon resonance spectroscopy (SPRs) as a novel probe tool in combination with cyclic voltammetry. Interestingly, upon repetitive electrochemical UPD and stripping of Ag, the surface structure of the resulting bare Au film is rearranged due to strong adatom-substrate interactions, which causes a large angle shift of SPR R-theta curves, in a good linear relationship with the number of UPDs, to a lower SPR angle. The n, K values of the surfacial Au monolayers before and after the repetitive Ag UPD and stripping for 27 times are found to be 0.133, 3.60 and 0.565, 9.39, respectively, corresponding to the huge shift of 1.61degrees to the left of the SPR minima. Cyclic voltammetry experiments in 0.10 M H2SO4 are carried out before and after the UPD treatment to examine the quality of the whole electrode surface and confirmed this change. To correlate the angle change in SPRs with the profile change in the cyclic voltammogram, the UPD treatment was also performed on a Au(111) textured thin film. It was therefore confirmed that the resonance position of the SPR spectrum is very sensitive to the surface crystallographic orientation of the bare Au substrates. Some surface atomic rearrangement can cause a pronounced SPR angle shift.
Resumo:
In this paper, a calix[4]arene derivative, 5,11,17,23-butyl-25,26,27,28-tetra-(ethanoxycarbonyl)-methoxy-calix[4]arene (L), is investigated as a host to recognize alkali metal ions (Li+, Na+, K+, Rb+ and Cs+) at the interface between two immiscible electrolyte solutions (ITIES). Well-defined cyclic voltammograms are obtained at the micro- and nano-water \ 1,2-dichloroethane (W \ DCE) interfaces supported at micro- and nano-pipets.
Resumo:
The electrochemical properties Of PW12O403- (abbreviated as PW12) anion in poly(ethylene glycol) (PEG) have been studied by cyclic voltammetry, complex impedance and FT-IR spectroscopy. The PW12 anion in PEG-LiClO4 electrolyte shows reasonable facile electrochemistry, and the diffusion coefficients Of PW12 were measured with microelectrode. It is shown that ionic conductivity of polymer electrolytes based on low molecular weight PEG can be improved by the addition of PW12. The increase of conductivity is coupled with decrease of transient cross-links density of polymer chains which is evidenced by the downshift of C-O-C stretching mode. The phenomena are explained in view of ion-ion and ion-polymer interactions.
Resumo:
The electrochemical behavior of alpha-Keggin-type nanoparticles, Co(en)(3)(PMo12O40) (abbreviated as PMo12-Co), have been studied in poly(ethylene glycol) for four different molecular weights (PEG, average MW 400, 600, 1000, and 2000 g mol(-1)) and containing LiClO4 (O/Li=100/1) supporting electrolyte. The diffusion coefficients of the PMo12-Co nanoparticles were determined using a microelectrode by chronoamperometry for PEG of different molecular weights that were used to describe the diffusion behavior of PMo12-Co nanoparticles in different phase states. Moreover, the conductivity of the composite system increases upon addition of PMo12-Co nanoparticles, which was measured by an a.c. impedance technique. FT-IR spectra and DSC were used to follow the interactions of PEG-LiClO4-PMo12-Co, and well described the reason that the PMo12-Co nanoparticles could promote the conductivity of the PEG-LiClO4-PMo12-Co system.
Resumo:
A new method for the fabrication of an integrated microelectrode for electrochemical detection (ECD) on an electrophoresis microchip is described. The pattern of the microelectrode was directly made on the surface of a microscope slide through an electroless deposition procedure. The surface of the slide was first selectively coated with a thin layer of sodium silicate through a micromolding in capillary technique provided by a poly(dimethylsiloxane) (PDMS) microchannel; this left a rough patterned area for the anchoring of catalytic particles. A metal layer was deposited on the pattern guided by these catalytic particles and was used as the working electrode. Factors influencing the fabrication procedure were discussed. The whole chip was built by reversibly sealing the slide to another PDMS layer with electrophoresis microchannels at room temperature. This approach eliminates the need of clean room facilities and expensive apparatus such as for vacuum deposition or sputtering and makes it possible to produce patterned electrodes suitable for ECD on microchip under ordinary chemistry laboratory conditions. Also once the micropattern is ready, it allows the researchers to rebuild the electrode in a short period of time when an electrode failure occurs. Copper and gold microelectrodes were fabricated by this technique. Glucose, dopamine, and catechol as model analytes were tested.
Resumo:
Recent studies have focused on the structural features of DNA-lipid assemblies. In this paper, we take methyl green (MG) as a probe molecule to detect the conformational change of DNA molecule induced by dimethyldioctadecylammonium bromide (DDAB) liposomes before the condensation process of DNA begins. DDAB-induced DNA topology changes were investigated by cyclic voltammetry (CV), circular dichroism (CD) and UV-VIS spectrometry. We find that upon binding to DNA, positively charged liposomes induce a conformational transition of DNA molecules from the native B-form to the C motif. Conformational transition in DNA results in the binding modes of MG to DNA, changing and being isolated from DNA to the solution. More stable complexes are formed between DNA and DDAB. That is also proved by the melting study of DNA.
Resumo:
The structure and the electron-transfer of cytochrome c binding on the anionic lipid vesicles were analyzed by electrochemical and various spectroscopic methods. It was found that upon binding to anionic lipid membrane, the formal potential of. cytochrome c shifted 30 mV negatively indicating an eager redox interaction than that in its native state. This is due to the local alteration of the coordination and the heme crevice. The structural Perturbation in which a molten globule-like state is formed during binding to anionic lipid vesicles is more important. This study may help to understand the mechanism of the electron-transfer reactions of cytochrome c at the mitochondrial membrane.
Resumo:
A flow injection amperometric immunoassay system based on the use of screen-printed carbon electrode for the detection of mouse IgG was developed. An immunoelectrode strip, on which an immunosorbent layer and screen-printed carbon electrode were integrated, and a proposed flow cell have been fabricated. The characterization of the flow immunoassay system and parameters affecting the performance of the immunoassay system were studied and optimized. Amperometric detection at 0.0 V (versus Ag/AgCl) resulted in a linear detection range of 30-700 ng ml(-1), with a detection limit of 3 ng ml(-1). The signal variation among electrode strips prepared from variant batch did not exceed 8.5% (n = 7) by measuring 0.5 mug ml(-1) antigen standard solution.
Resumo:
Thiol-terminated oligonucleotide was immobilized to gold surface by self-assembly method. A novel amplification strategy was introduced for improving the sensitivity of DNA. hybridization using biotin labeled protein-streptavidin network complex. This complex can be formed in a cross-linking network of molecules so that the amplification of the response signal will be realized due to the big molecular size of the complex. It could be proved from the impedance technique that this amplification strategy caused dramatic improvement of the detection sensitivity. These results give significant advances in the generality and sensitivity as it is applied to biosensing.
Resumo:
The effect of La3+ on the electrochemical behavior and structure of heme undecapeptide-microperoxidase-11 (MP-11)-in the aqueous solution was investigated using cyclic voltammetry, circular dichroism (CD) and UV-vis absorption spectrometry. It was found for the first time that La3+ would promote the electrochemical reaction of MP-11 at the glassy carbon (GC) electrode. This is mainly due to the fact that La3+ would induce more beta-turn and alpha-helical conformations from the random coil conformation of MP-11 and increase the non-planarity of the heme.
Resumo:
Here, we describe a new method to study the biointeraction between Escherichia coli and mannose by using supramolecular assemblies composed of polydiacetylene supported on the self-assembled monolayer of octadecanethiol on a gold electrode. These prepared bilayer materials simply are an excellent protosystem to study a range of important sensor-related issues. The experimental results from UV-vis spectroscopy, resonance Raman spectroscopy, and electrochemistry confirm that the specific interactions between E. coli and mannose can cause conformational changes of the polydiacetylene backbone rather than simple nonspecific adsorption. Moreover, the direct electrochemical detection by polydiacetylene supramolecular assemblies not only opens a new path for the use of these membranes in the area of biosensor development but also offers new possibilities for diagnostic applications and screening for binding ligands.
Resumo:
It is reported for the first time that the performance of the electrochemical H2S sensor with the Nation membrane pre-treated with the concentrated H2SO4 as the solid electrolyte is much more stable than that for the sensor with the Nation membrane without H2SO4 pretreatment. The sensitivity of the sensor is about 2.92 muA/ppm. The response time of the sensor is about 9 s. The detection limit is about 0.1 ppm. Therefore, this kind of the electrochemical H2S gas sensor may be desirable for the practical application.
Resumo:
Gold nanopartides were Immobilized onto the electrode surface by simple self-assembly technique. Interestingly, the ensembles of these nanopartides exhibit quantized charging behaviors in aqueous solution. Possible mechanism for such behaviors was proposed.
Resumo:
Chitosan has shown its potential as a non-viral gene carrier and an adsorption enhancer for subsequent drug delivery to cells. These results showed that chitosan acted as a membrane perturbant. However, there is currently a lack of direct experimental evidence of this membrane perturbance effect, especially for chitosans with low molecular weight (LMW). In this report, the interaction between a lipid (didodecyl dimethylammonium bromide; DDAB) bilayer and chitosan with molecular weight (MW) of 4200 Da was studied with cyclic voltammetry (CV), electrochemical impedance spectroscopy and surface plasmon resonance (SPR). A lipid bilayer was formed by-fusion of oppositely charged lipid vesicles on a mercaptopropionic acid (MPA)-modified gold surface to mimic a cell membrane. The results showed that the LMW chitosan could disrupt the lipid bilayer, and the effect seemed,to be in a concentration-dependent manner.