274 resultados para Column liquid chromatography-mass spectrometry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pressurized capillary electrochromatography (pCEC) and electrospray ionization-mass spectrometry (ESI-MS) have been hyphenated for protein analysis. Taken cytochrome c, lysozyme, and insulin as samples, the limits of detection (LODs) for absolute concentrations are 10(-11) mol (signal-to-noise ratio S/N = 3) with relative standard deviations (RSDs) of retention time and peak area, respectively, of less than 1.7% and 4.8%. In order to improve the detection sensitivity, on-line concentration by field-enhanced sample-stacking effect and chromatographic zone-sharpening effect has been developed, and parameters affecting separation and detection, such as pH and electrolyte concentration in the mobile phase, separation voltage, as well as enrichment voltage and time, have been studied systematically. Under the optimized conditions, the LODs of the three proteins could be decreased up to 100-fold. In addition, the feasibility of such techniques has been further demonstrated by the analysis of modified insulins at a concentration of 20 mu g/mL.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The estrogenic activity of the Chinese herb kudzu root was investigated by a recombinant yeast screening assay (YES). Isoflavones are the main components in the plant, of which puerarin is the most abundant one. The kudzu root extract was separated into four fractions according to the polarity. The crude extract and its sub-fractions, except the water fraction, showed clear estrogenic activity and the potencies were in the range of 10(-3) to 10(-1) g/l. The ligand potency was used to compare the estrogenic activity of these fractions. The crude extract and its sub-fractions were further analyzed by high performance liquid chromatography (HPLC) to correlate the activity and the active components. Bioassay and chemical analysis showed that theoretical estrogenic activity expressed as equivalent 17 beta-estradiol concentration or the cumulative effects are comparable to that experimentally determined by YES. The results showed that the high content of isoflavones as well as the high estrogenic activity could make kudzu root extract an interesting candidate for hormone replacement therapy. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method with carbon nanotubes functioning both as the adsorbent of solid-phase extraction (SPE) and the matrix for matrix assisted laser desorption/ ionization mass spectrometry (MALDI-MS) to analyze small molecules in solution has been developed. In this method, 10 muL suspensions of carbon nanotubes in 50% (vol/vol) methanol were added to the sample solution to extract analytes onto surface of carbon nanotubes because of their dramatic hydrophobicity. Carbon nanotubes in solution are deposited onto the bottom of tube with centrifugation. After removing the supernatant fluid, carbon nanotubes are suspended again with dispersant and pipetted directly onto the sample target of the MALDI-MS to perform a mass spectrometric analysis. It was demonstrated by analysis of a variety of small molecules that the resolution of peaks and the efficiency of desorption/ ionization on the carbon nanotubes are better than those on the activated carbon. It is found that with the addition of glycerol and sucrose to the dispersant, the intensity, the ratio of signal to noise (S/N), and the resolution of peaks for analytes by mass spectrometry increased greatly. Compared with the previously reported method by depositing sample solution onto thin layer of carbon nanotubes, it is observed that the detection limit for analytes can be enhanced about 10 to 100 times due to solid-phase extraction of analytes in solution by carbon nanotubes. An acceptable result of simultaneously quantitative analysis of three analytes in solution has been achieved. The application in determining drugs spiked into urine has also been realized. (C) 2004 American Society for Mass Spectrometry.