288 resultados para Characteristics of Corporate Network
Resumo:
Plasma in the air is successfully induced by a free-oscillated Nd:YAG laser pulse with a peak power of 10(2-3) W. The initial free electrons for the cascade breakdown process are from the ablated particles from the surface of a heated coal target, likewise induced by the focused laser beam. The laser field compensates the energy loss of the plasma when the corresponding temperature and the images are investigated by fitting the experimental spectra of B-2 Sigma(+) -> X-2 Sigma(+) band of CN radicals in the plasma with the simulated spectra and a 4-frame CCD camera. The electron density is estimated using a simplified Kramer formula. As this interaction occurs in a gas mixture of hydrogen and oxygen, the formation and development of the plasma are weakened or restrained due to the chaining branch reaction in which the OH radicals are accumulated and the laser energy is consumed. Moreover, this laser ignition will initiate the combustion or explosion process of combustible gas and the minimum ignition energy is measured at different initial pressures. The differences in the experimental results compared to those induced by a nanosecond Q-switched laser pulse with a peak power of 10(6-8) W are also discussed. (C) 2009 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.
Resumo:
A depth-averaged two-dimensional hydrodynamics model and a two-dimensional water quality model, bases on the alternating direction implicit (ADI) method, is developed to study the distribution characteristics of total phosphorus (TP) in Taihu Lake. Wind stress, the pollution source from the inflow rivers, releasing rate of TP from the bottom sediment and water diversion from Yangtze River are the effecting factors of TP distribution. By using the model proposed in this paper, the concentration field of the total phosphorus was simulated, which leads to the conclusion that the flow field has a great influence on the spatial and temporal distribution of TP in the Taihu Lake.
Resumo:
Propulsion characteristics of wing-in-ground effect propulsors were investigated using a comparative analysis of thrust and powering characteristics between wing-in-ground (WIG) effect thrusters and traditional screw propellers. WIG thrusters were found to have constant thrust production and efficiency, nearly independent of speed of advance, as contrary to screw propellers, whose optimum efficiency occurs at only one speed point. To produce the same amount of thrust as equivalent screw propellers, WIG thrusters have to work under heavily loaded operating conditions. WIG thrusters were also found to produce a relatively lower but nearly constant efficiency and thrust, independent of speed. Another distinguishing propulsion characteristic revealed for WIG thrusters is that they are capable of operating at much higher speeds, in a range of three to six times that of screw propellers of the same size. While the speed range of screw propellers is mainly limited by their geometric pitch, the speed range of WIG thrusters has no speed limit in ideal fluid. In reality, the speed range is only limited by viscous drag and cavitation, or compressibility, in water or air, respectively. This suggests a potential for WIG thrusters of higher speed application than screw propellers. An experimental investigation and validation of the propulsion system is warranted. Crown Copyright (C) 2010 Published by Elsevier Ltd. All rights reserved.
Resumo:
The slender axis-symmetric submarine body moving in the vertical plane is the object of our investigation. A coupling model is developed where displacements of a solid body as a Euler beam (consisting of rigid motions and elastic deformations) and fluid pressures are employed as basic independent variables, including the interaction between hydrodynamic forces and structure dynamic forces. Firstly the hydrodynamic forces, depending on and conversely influencing body motions, are taken into account as the governing equations. The expressions of fluid pressure are derived based on the potential theory. The characteristics of fluid pressure, including its components, distribution and effect on structure dynamics, are analyzed. Then the coupling model is solved numerically by means of a finite element method (FEM). This avoids the complicacy, combining CFD (fluid) and FEM (structure), of direct numerical simulation, and allows the body with a non-strict ideal shape so as to be more suitable for practical engineering. An illustrative example is given in which the hydroelastic dynamic characteristics, natural frequencies and modes of a submarine body are analyzed and compared with experimental results. Satisfactory agreement is observed and the model presented in this paper is shown to be valid.
Resumo:
Taihu Lake is the third largest fresh water lake in China. With the fast economic development, abundant industrial and agricultural waste water has been discharged into Taihu Lake, causing the eutrophication of the water quality, which greatly affected the water utility. In the past decades, the treatment of Taihu Lake has witnessed limited success. Therefore, it is practically and theoretically significant to study the eutrophication of Taihu Lake. This research has focused on the issue of water quality including the characteristics of spatial and temporal distributions, and the rules of nutrient diffusion in the Taihu lake area. Based on the monitoring data, the basis distribution characteristics of water quality in Taihu Lake are analyzed. Comparing Taihu Lake with other Lakes shows that one important reason for Taihu eutrophication is the long period of water retention. A transporting and diffusing model of Taihu nutrient is developed by combining with the hydrodynamics model. Using the model, the concentration field of the total phosphorus (TP) and the influence of wind-driven current are numerically investigated, which leads to the conclusion that the flow field has a great influence on the spatial and temporal distributions of TP in Taihu Lake. Furthermore, the effect for improving the water quality by the project of water diversion from the Yangtze River to Taihu Lake was analyzed by simulation. The results demonstrate that short-term water diversion cannot improve the water quality of the heavily-polluted Meiliang Bay and the western bank areas of Taihu Lake.
Resumo:
A modeling study is conducted to investigate the effect of hydrogen content in propellants on the plasma flow, heat transfer and energy conversion characteristics of low-power (kW class) arc-heated hydrogen/nitrogen thrusters (arcjets). 1:0 (pure hydrogen), 3:1 (to simulate decomposed ammonia), 2:1 (to simulate decomposed hydrazine) and 0:1 (pure nitrogen) hydrogen/nitrogen mixtures are chosen as the propellants. Both the gas flow region inside the thruster nozzle and the anode-nozzle wall are included in the computational domain in order to better treat the conjugate heat transfer between the gas flow region and the solid wall region. The axial variations of the enthalpy flux, kinetic energy flux, directed kinetic-energy flux, and momentum flux, all normalized to the mass flow rate of the propellant, are used to investigate the energy conversion process inside the thruster nozzle. The modeling results show that the values of the arc voltage, the gas axial-velocity at the thruster exit, and the specific impulse of the arcjet thruster all increase with increasing hydrogen content in the propellant, but the gas temperature at the nitrogen thruster exit is significantly higher than that for other three propellants. The flow, heat transfer, and energy conversion processes taking place in the thruster nozzle have some common features for all the four propellants. The propellant is heated mainly in the near-cathode and constrictor region, accompanied with a rapid increase of the enthalpy flux, and after achieving its maximum value, the enthalpy flux decreases appreciably due to the conversion of gas internal energy into its kinetic energy in the divergent segment of the thruster nozzle. The kinetic energy flux, directed kinetic energy flux and momentum flux also increase at first due to the arc heating and the thermodynamic expansion, assume their maximum inside the nozzle and then decrease gradually as the propellant flows toward the thruster exit. It is found that a large energy loss (31-52%) occurs in the thruster nozzle due to the heat transfer to the nozzle wall and too long nozzle is not necessary. Modeling results for the NASA 1-kW class arcjet thruster with hydrogen or decomposed hydrazine as the propellant are found to compare favorably with available experimental data.
Resumo:
A modelling study is performed to compare the plasma °ow and heat transfer char- acteristics of low-power arc-heated thrusters (arcjets) for three di®erent propellants: hydrogen, nitrogen and argon. The all-speed SIMPLE algorithm is employed to solve the governing equa- tions, which take into account the e®ects of compressibility, Lorentz force and Joule heating, as well as the temperature- and pressure-dependence of the gas properties. The temperature, veloc- ity and Mach number distributions calculated within the thruster nozzle obtained with di®erent propellant gases are compared for the same thruster structure, dimensions, inlet-gas stagnant pressure and arc currents. The temperature distributions in the solid region of the anode-nozzle wall are also given. It is found that the °ow and energy conversion processes in the thruster nozzle show many similar features for all three propellants. For example, the propellant is heated mainly in the near-cathode and constrictor region, with the highest plasma temperature appear- ing near the cathode tip; the °ow transition from the subsonic to supersonic regime occurs within the constrictor region; the highest axial velocity appears inside the nozzle; and most of the input propellant °ows towards the thruster exit through the cooler gas region near the anode-nozzle wall. However, since the properties of hydrogen, nitrogen and argon, especially their molecular weights, speci¯c enthalpies and thermal conductivities, are di®erent, there are appreciable di®er- ences in arcjet performance. For example, compared to the other two propellants, the hydrogen arcjet thruster shows a higher plasma temperature in the arc region, and higher axial velocity but lower temperature at the thruster exit. Correspondingly, the hydrogen arcjet thruster has the highest speci¯c impulse and arc voltage for the same inlet stagnant pressure and arc current. The predictions of the modelling are compared favourably with available experimental results.