341 resultados para CATALYTIC AMOUNTS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arginine kinase (AK) is a phosphotransferase that plays a critical role in energy metabolism in invertebrates. in this paper, the full-length cDNA of AI( was cloned from shrimp, Litopenaeus vannamei by using RT-PCR and RACE PCR. It was 1446 bp encoding 356 amino acids, and belongs to the conserved phosphagen kinase family. The quantitative real-time reverse transcription PCR analysis revealed a broad expression of AK with the highest expression in the muscle and the lowest in the skin. The expression of AK after challenge with LIPS was tested in hemocytes and muscle, which indicated that the two peak values were 6.2 times (at 3 h) and 10.14 times (at 24 h) in the hemocytes compared with the control values, respectively (P < 0.05), while the highest expression of AK was 41 times (at 24 h) in the muscle compared with the control (P < 0.05). In addition, AK was expressed in Eschetichia coli by prokaryotic expression plasmid pGEX-4T-2. The recombinant protein was expressed as glutathione s-transferase (GST) arginine kinase (GST-AK) fusion protein, which was purified by affinity chromatography using Glutathione Sepharose 4B. After cleavage from GST by using a site-specific protease, the recombinant protein was identified by ESI-MS and showed AK activity. After treatment with 10 mM ATP, the enzyme activity significantly increased. However, the enzyme activity was inhibited by 10 mM alpha-ketoglutarate, 50 mM glucose and 200 mM ATP. This research suggested that AK might play an important role in the coupling of energy production and utilization and the immune response in shrimps. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ignition processes for the catalytic partial oxidation of methane (POM) to synthesis gas over oxidic nickel catalyst (NiO/Al2O3), reduced nickel catalyst (Ni-0/Al2O3), and Pt-promoted oxidic nickel catalyst (Pt-NiO/Al2O3) were studied by the temperature-programmed surface reaction (TPSR) technique. The complete oxidation of methane usually took place on the NiO catalyst during the CH4/O-2 reaction, even with a pre-reduced nickel catalyst, and Ni-0 is inevitably first oxidized to NiO if the temperature is below the ignition temperature. It is above a certain temperature that Ni-0 is formed again, which leads to the start of the POM. The POM can be initiated at a much lower temperature on a Pt-NiO catalyst because of Pt promotion of the reduction of NiO. The POM in a fluidized bed can be easily initiated due to the addition of Pt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deposition of carbon on catalysts during the partial oxidation of methane to syngas has been investigated in a fluidized bed. It was found that the relative rate of carbon deposition follows the order NiP > >d > Pt, Rh. Although the rate of carbon deposition in the fluidized bed was much lower than that in the fixed bed, carbon deposition could still be detected in the fluidized bed if a CH4/O-2 ratio in greater than 2.3 was used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The catalytic performance of Ir-based catalysts was investigated for the reduction of NO under lean-burn conditions over binderless Ir/ZSM-5 monoliths, which were prepared by a vapor phase transport (VPT) technique. The catalytic activity was found to be dependent not only on the Ir content, but also on the ZSM-5 loading of the monolith. With the decreasing of the Ir content or the increasing of the ZSM-5 loading of the monolith, NO conversion increased. When the ZSM-5 loading on the cordierite monolith was raised up to ca. 11% and the metal Ir content was about 5 g/l, the NO conversion reached its maximum value of 73% at 533 K and SV of 20 000 h(-1). Furthermore, both the presence of 10% water vapor in the feed gas and the variation of space velocity of the reaction gases have little effect on the NO conversion. A comparative test between Ir/ZSM-5 and Cu/ZSM-5, as well as the variation of the feed gas compositions, revealed that Ir/ZSM-5 is very active for the reduction of NO by CO under lean conditions, although it is a poor catalyst for the C3H8-SCR process. This unique property of Ir/ZSM-5 makes it superior to the traditional three-way catalyst (TWC) for NO reduction under lean conditions. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The catalytic behavior of Mo-based zeolite catalysts with different pore structure and size, particularly with 8 membered ring ( M R), 10 M R, coexisted 10 and 12 M R, and 12 M R, was studied in methane aromatization under the conditions of SV=1500 ml/(g.h), p=0.1 MPa and T = 973 K. It was found that the catalytic performance is correlated with the pore structure of the zeolite supports. The zeolites that possess 10 MR or 10 and 12 MR pore structure with a pore diameter equal to or slightly larger than the dynamic diameter of benzene molecule, such as ZSM-5, ZSM-11, ZRP-1 and MCM-22, are fine supports. Among the tested zeolite supports, MCM-22 exhibits the highest activity and selectivity for benzene. A methane conversion of 10.5% with benzene selectivity of 80% was achieved over Mo/MCM-22 catalyst. The Mo/ERS-7 catalyst with 8 MR (0.45 nm) does not show any activity in methane dehydro-aromatization, while Mo/JQX-1 and Mo/SBA-15 catalysts with 12 MR pore exhibit little activity in the reaction. It can be concluded that the zeolites with 10 MR pore or coexisted 10 and 12 MR, having pore size equal to or slightly larger than the dynamic diameter of benzene molecule, are fine supports for methane activation and aromatization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The catalytic performance of silver-modified ZSM-5 catalysts in the selectively catalytic reduction (SCR) of NOx with methane was investigated. NO was selectively reduced by CH4 to N-2 in the presence of excess O-2, and the catalytic activity depended on both the activation of CH4 and the adsorption properties of NOx. Silver incorporated in ZSM-5 zeolite activated CH4 at low temperatures and lowered the "light-off" temperature for the CH4-SCR of NOx. Temperature-programmed (TP) spectroscopy studies depicted that surface nitrosyl species directly decomposed to N-2 in the absence of O-2. CH4 could not effectively reduce surface nitrosyl species, but might facilitate the direct decomposition of NO through the removal of surface oxygen. Surface nitrates were formed in NO and O-2 coexisting system and could be effectively reduced by CR4 to nitrogen. The priority of surface nitrates to O-2 in the reaction with CH4 clearly demonstrated that CH4 selectively and preferentially reduced the surface nitrate species to N-2 in the excess of oxygen. (C) 2002 Elsevier Science B.V. All rights reserved.