399 resultados para CAPILLARY-ELECTROPHORESIS
Resumo:
This review article summarizes the variety of polar stationary phases that have been employed for capillary electrochromatographic separations. Compared with reversed-phase stationary phases, the polar alternatives provide a completely different retention selectivity towards polar and charged analytes. Different types of polar stationary phases are reviewed, including the possible retention mechanisms. Electrochromato-graphic separations of polar solutes, peptides, and basic pharmaceuticals on polar stationary phases are presented.
Resumo:
A polymer-based monolithic capillary column imprinted with 4-aminopyridine (4-AP) was prepared by a thermally-initiated polymerization process; and its performance as a capillary electrochromatographic medium was evaluated in separating 4-AP and 2-AP isomers. The effects of experimental parameters, such as pH value and ionic strength of the buffer, the acetonitrile content in the mobile phase, and the applied voltage, on the resolution of these isomers had been carefully investigated. It was found that in the retention process there were interplays of multiple mechanisms of ion-exchange, molecular imprinting, and electrophoresis. These mechanisms allowed more sophisticated control of experimental parameters in the separation of ionizable compounds.
Resumo:
The development of a method for determining arsenic species by capillary zone electrophoresis (CZE) with indirect laser-induced fluorescence (LIF) is described in this paper. The buffer pH, the concentration of fluorescein, the nature and the concentration of the background electrolytes (BGEs) were defined. When 2.0 mM NaHCO3 (pH 9.28) with 10(-7) M fluorescein was used as the buffer, arsenite (As(lll), dimethylarsonic acid (DMA), monomethylarsonic acid (MMA), and arsenate (As(V)) were all separated from one another. The limits of detection for the four arsenic species were p p in the range of 0.12-0.54 mg/L. This method was used in the analysis of spiked arsenic species in tap and mineral water to demonstrate its usefulness. The results showed that both the recovery and the reproducibility of the developed method were acceptable.
Resumo:
A cellulose trisphenylcarbamate-bonded chiral stationary phase was applied to nano-liquid chromatography (nano-LC) and capillary electrochromatography (CEC) with nonaqueous and aqueous solutions as the mobile phases. Several chiral compounds were successfully resolved on the prepared phase by nano-LC. The applicability of nonaqueous CEC on a cellulose derivative stationary phase was investigated with the organic solvents methanol, hexane, 2-propanol, and tetrahydrofuran (THF) containing acetic acid, as well as triethylamine as the mobile phases. Enantiomers of warfarin and praziquantel were baseline-resolved with plate numbers of 82 300 and 38 800 plates/m, respectively, for the first eluting enantiomer. The influence of applied voltage, concentration of nonpolar solvent, apparent pH, and buffer concentration in the mobile phase on the electroosmotic flow (EOF) and the mobility of the enantiomers was evaluated. Enantioseparations of traps-stilbene oxide and praziquantel were also achieved in aqueous CEC with plate numbers of 111 100 and 107 400 plates/m, respectively, for the first eluting enantiomer. A comparison between nonaqueous CEC and aqueous CEC based on a cellulose trisphenylcarbamate stationary phase was discussed. Pressure-assisted CEC was examined for the chiral separation of praziquantel and faster analysis with high enantioselectivity was acquired with the proper pressurization of the inlet vial.
Resumo:
The mixed mode of reversed phase (RP) and strong canon-exchange (SCX) capillary electrochromatography (CEC) based on a monolithic capillary column has been developed. The capillary monolithic column was prepared by in situ copolymerization of 2-(sulfooxy)ethyl methacrylate (SEMA) and ethylene dimethacrylate (EDMA) in the presence of porogens. The sulfate group provided by the monomer SEMA on the monolithic bed is used for the generation of the electroosmotic flow (EOF) from the anode to the cathode, but at the same time serves as a SCX stationary phase. A mixed-mode (RP/SCX) mechanism for separation of peptides was observed in the monolithic column, comprising hydrophobic and electrostatic interaction as well as electrophoretic migration at a low pH value of mobile phase. A column efficiency of more than 280000 plates/m for the unretained compound has been obtained on the prepared monoliths. The relative standard deviations observed for to and retention factors of peptides were about 0.32% and less than 0.71% for ten consecutive runs, respectively. Effects of mobile phase compositions on the EOF of the monolithic column and on the separation of peptides were investigated. The selectivity on separation of peptides in the monolithic capillary column could be easily manipulated by varying the mobile phase composition.
Resumo:
A theoretical study on the velocity of electroosmotic flow (EOF) and the retention times of neutral solutes under multiple-step gradient of capillary electrochromatography (CEC) was carried out, focusing on that with three kinds of mobile phases. Through the model computations, the detaining time of the second kind of mobile phase in the column was proved to play an important role in affecting EOF. The variation speed of EOF was shown to be determined by the differences among dead times in different steps. In addition, the prediction of the retention times of 13 aromatic compounds under gradient mode was performed with the deduced equations. A relative error below 3.3% between the calculated and experimental values was obtained, which demonstrated the rationality of the theoretical deduction. Our study could not only improve the comprehension of stepwise gradient elution, but also be of significance for the further optimization of separation conditions in the analysis of complex samples.
Resumo:
Positively charged chiral stationary phases (CSPs) were prepared for capillary electrochromatography (CEC) separation of enantiomers by chemically immobilizing cellulose derivatives onto diethylenetriaminopropylated silica (DEAPS) with tolylene-2,4-diisocyanate (TDI) as a spacer reagent. Anodic electroosmotic mobility was observed in both nonaqueous and aqueous mobile phases due to the positively charged amines on the surface of the prepared CSPs. For comparison, the traditionally used 3-aminopropyl silica (APS) was also adopted as the base material instead of DEAPS to prepare CSP. It was observed that the EOF on the DEAPS-based CSP was 18%-60% higher than that on the APS-based CSP under nonaqueous mobile phase conditions. Separation of enantiomers in CEC was performed on the positively charged CSPs with the nonaqueous mobile phases of pure ethanol or mixture of hexane-alcohol and the aqueous phases of acetonitrile-water or 95% ethanol. Fast separation of enantiomers was achieved on the newly prepared CSPs.
Resumo:
Peptide mass mapping analysis, utilizing a regenerable enzyme microreactor with metal-ion chelated adsorption of enzyme, combined with matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS) was developed. Different procedures from the conventional approaches were adopted to immobilize the chelator onto the silica supports, that is, the metal chelating agent of iminodiacetic acid (IDA) was reacted with glycidoxypropyltrimethoxysilane (GLYMO) before its immobilization onto the inner wall of the fused-silica capillary pretreated with NH4HF2. The metal ion of copper and subsequently enzyme was specifically adsorbed onto the surface to form the immobilized enzyme capillary microreactor, which was combined with MALDI-TOF-MS to apply for the mass mapping analysis of nL amounts of protein samples. The results revealed that the peptide mapping could routinely be generated from 0.5 pmol protein sample in 15 min at 50degreesC, even 20 fmol cytochrome c could be well digested and detected.
Resumo:
A mode of capillary electrochromatography for separation of ionic compounds driven by electrophoretic mobility on a neutrally hydrophobic monolithic column was developed. The monolithic column was prepared from the in situ copolymerization of lauryl methacrylate and ethylene dimethacrylate to form a C-12 hydrophobic stationary phase. It was found that EOF in this hydrophobic monolithic column was very poor, even the pH value of mobile phase at 8.0. The peptides at acidic buffer were separated on the basis of their differences in electrophoretic mobility and hydrophobic interaction with the stationary phase; therefore, different separation selectivity can be obtained in CEC from that in capillary zone electrophoresis (CZE). Separation of peptides has been realized with high column efficiency (up to 150 000 plates/meter) and good reproducibility (migration time with RSD < 0.5%), and all of the peptides, including some basic peptides, showed good peak symmetry. Effects of the mobile phase compositions on the retention of peptides at low pH have been investigated in a hydrophobic capillary monolithic column. The significant difference in selectivity of peptides in CZE and CEC has been observed. Some peptide isomers that cannot be separated by CZE have been successfully separated on the capillary monolithic column in this mode with the same buffer used.