358 resultados para BLOCK-COPOLYMER MELTS
Resumo:
A novel supramolecular inclusion complex of alpha-CD/C-60 was synthesized using anionic C-60. The reaction progress was monitored in situ by visible and near-IR spectroscopy. The obtained complex was characterized by UV-vis, C-13 NMR, MALDI-TOF, and cyclic voltammetry. The induction and dispersion forces are considered to be the major driving forces for the formation of a resulting alpha-CD/C-60(.-) inclusion complex.
Resumo:
The aggregation of rod-flexible ABA and BAB triblock (A was rod block and repulsive with block B) copolymers in a thin film was studied as a function of varying the rigidity (eta) and the length of the rod block by Monte Carlo simulation. The rigidity of block A was defined as eta = R-c/R-max in this study. R-c, was the end-to-end distance below which the conformation of the block was not allowed, whereas R-max, was the longest end-to-end distance that the block could be. If eta = 0 the block was flexible, whereas if eta = 1 the block was a straight rod. The simulation results showed that the ABA triblock copolymer film were likely to form lamella structure with increasing the rigidity (eta) of block A. The lamellas were parallel each other and perpendicular to the film surface. However, the aggregation of BAB triblock copolymers tended to change from lamella to cylinder structure with increasing the rigidity (eta) of block A. Typical lamella and cylinder co-exist structure was obtained at eta = 0.504 for the BAB copolymer film. On the other hand, the simulation results indicated that the film changed from disorder to order, then to disorder structure with increasing the relative length of B block for both ABA and BAB copolymer films.
Resumo:
The confined crystallization behavior, melting behavior, and nonisothermal crystallization kinetics of the poly(ethylene glycol) block (PEG) in poly(L-lactide)poly(ethylene glycol) (PLLA-PEG) diblock copolymers were investigated with wideangle X-ray diffraction and differential scanning calorimetry. The analysis showed that the nonisothermal crystallization behavior changed from fitting the Ozawa equation and the Avrami equation modified by Jeziorny to deviating from them with the molecular weight of the poly(L-lactide) (PLLA) block increasing. This resulted from the gradual strengthening of the confined effect, which was imposed by the crystallization of the PLLA block. The nucleation mechanism of the PEG block of PLLA15000-PEG5000 at a larger degree of supercooling was different from that of PLLA2500-PEG5000, PLLA5000-PEG5000, and PEG5000 (the numbers after PEG and PLLA denote the molecular weights of the PEG and PLLA blocks, respectively). They were homogeneous nucleation and heterogeneous nucleation, respectively.
Resumo:
A facile molten salt synthesis route was developed to prepare ZnTiO3 ceramic powders with simple oxides ZnO and TiO2 using sodium and potassium chloride eutectic salts as flux. The role of calcination temperature and time and the amount of salt addition to ZnTiO3 formation was investigated by thermogravimetry-differential thermal analysis, X-ray diffraction and Fourier transformation-infrared spectroscopy measurements. Pure hexagonal phase of ZnTiO3 could be obtained from the mixture of the simple oxides and the chlorides (50 mol% KCl, 20 times to oxides in molar ratio) heating at 800 degrees C for 6 h. The scanning electron microscopy images revealed the products were hexagonal sheets of about 1-3 mu m size. Increasing the amount of salt aids in reducing the crystal sizes of final ceramic powders because of diluting the solution.
Resumo:
The poly(L-lactide) (PLLA)/starch blends were prepared by the PLLA grafting starch (PLLA-g-St) copolymers as a compatibilizer, and their thermal, mechanical and morphological characterizations were performed to show the better performance of these blends compared to the virgin PLLA/starch blend without the compatibilizer, including PLLA crystallinity, interfacial adhesion between the PLLA matrix and starch dispersive phases, mechanical test, medium resistance, and contact angle. The 50/50 composite of PLLA/starch compatibilized by 10% PLLA-g-St gave a tensile strength of 24.7 MPa and an elongation at break of 8.7%, respectively, vs. 11.3 MPa and 1.5%, respectively, for the simple 50/50 blend of PLLA/starch.
Resumo:
Isothermal crystallization kinetics and morphology of the poly(L-lactide) block in poly(L-lactide)poly(ethylene glycol) diblock copolymers were studied by differential scanning calorimetry (DSC) and polarized optical microscopy (POM), respectively. The results were compared with that of the PLLA homopolymer. The introduction of the PEG block accelerated the crystallization rate of the PLLA block and promoted to form ring-banded spherulites. The analysis of isothermal crystallization kinetics has shown that the PLLA homopolymer accorded with the Avrami equation. But the PLLA block of the diblock copolymers deviated from the Avrami equation, which resulted from increasing of the crystallization rate and occurring of the second crystallization process. The equilibrium melting temperature (T,,) of the PLLA block fell with its molecular weight decreasing. The conditions to obtain more regular ring-banded spherulites were below: the sample was the PLLA block of LA(5) EG(5); the crystallization temperature was about from 95 degrees C to 100 degrees C, which almost corresponded to regime II.
Resumo:
The purpose of the present work is to investigate the compositional difference of polypropylene-polyethylene block copolymers (PP-b-PE) manufactured industrially by the process of degradation and hydrogenation, respectively. Each of the PP-b-PE copolymers was fractionated into three fractions with heptane and chloroform. The compositions of the three fractions were characterized by C-13 nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectroscopy, as well as differential scanning calorimetry (DSC) and thermal fractionation. The results showed that the Chloroform-soluble fraction was amorphous ethylene-propylene rubber, and the content of the rubber in PP-b-PE manufactured by hydrogenation was less than that by degradation. The degree of crystallinity of the chloroform-insoluble fraction of the PP-b-PE manufactured by hydrogenation is higher than that of by degradation.
Resumo:
In this article, ethylene-propylene-diene-rubber (EPDM) was epoxidized with an in situ formed performic acid to prepare epoxided EPDM (eEPDM). The eEPDM together with the introduction of PP-g-AA was used to compatibilize PP/EPDM blends in a Haake mixer. FTIR results showed that the EPDM had been epoxidized. The reaction between epoxy groups in the eEPDM and carboxylic acid groups in PP-g-AA had taken place, and PP-g-EPDM copolymers were formed in situ. Torque test results showed that the actual temperature and torque values for the compatibilized blends were higher than that of the uncompatibilized blends. Scanning electron microscopy (SEM) observation showed that the dispersed phase domain size of compatibilized blends and the uncompatibilized blends were 0.5 and 1.5 mu m, respectively. The eEPDM together with the introduction of PP-g-AA could compatibilize PP/EPDM blends effectively. Notched Izod impact tests showed that the formation of PP-g-EPDM copolymer improved the impact strength and yielded a tougher PP blend.
Resumo:
A new type of sol-gel-derived titanium oxide/copolymer composite material was developed and used for the construction of glucose biosensor. The composite material merged the best properties of the inorganic species, titanium oxide and the organic copolymer, poly(vinyl alcohol) grafting 4-vinylpyridine (PVA-g-PVP). The glucose oxidase entrapped in the composite matrix retained its bioactivity. Morphologies of the composite-modified electrode and the enzyme electrode were characterized with a scanning electron microscope. The dependence of the current responses on enzyme-loading and pH was studied. The response time of the biosensor was < 20 s and the linear range was up to 9 mM with a sensitivity of 405 nA/mM. The biosensor was stable for at least I month. In addition, the tetrathiafulvalene-mediated enzyme electrode was constructed for the decrease of detection potential and the effect of three common physiological sources that might interfere was also investigated.
Resumo:
The cloud-point temperatures (T-cl's) of poly(ethylene oxide) (PEO) and poly(ethylene oxide)-block-polydimethylsiloxane (P(EO-b-DMS)) homopolymer and block-oligomer mixtures were determined by turbidity measurements over a range of temperatures (105 to 130degrees), pressures (1 to 800 bar), and compositions (10-40 wt.-% PEO). The system phase separates upon cooling and T-cl was found to decrease with an increase in pressure for a constant composition. In the absence of special effects, this finding indicates negative excess volumes. Special attention was paid to the demixing temperatures as a function of the pressure for the different polymer mixtures and the plots in the T-phi plane (where phi signifies volume fractions). The cloud-point curves of the polymer mixture under pressures were observed for different compositions. The Sanchez-Lacombe (SL) lattice fluid theory was used to calculate the spinodals, the binodals, the Flory-Huggins (FH) interaction parameter, the enthalphy of mixing, and the volume changes of mixing. The calculated results show that modified P(EO-b-DMS) scaling parameters with the new combining rules can describe the thermodynamics of the PEO/P(EO-b-DMS) system well with the SL theory.
Resumo:
Reactive compatibilization of ethylene-propylene copolymer functionalized with allyl (3-isocyanato-4-tolyl) carbamate (TAI) isocyanate (EPM-g-TAI) and polyamide 6 (PA6) was investigated in this paper, FTIR analysis revealed the evidence of a chemical reaction between the end groups of PA6 and EPM-g-TAI. Thermal, rheological, morphological, and mechanical properties of the resultant system were examined, DSC analysis indicated that the crystallization of PA6 in Pa6/EPM-g-TAI blends was inhibited, due to the chemical reaction that occurs at the interface of PA6 and EPM-g-TAI. Rheological measurement showed that complex viscosity and storage modulus of PA6/EPM-g-TAI were both dramatically enhanced compared to those of PA6/EPM at the same blending composition. After examining the morphology of both blending systems, smaller particile sizes, more homogeneous distribution of domains and improved interfacial adhesion between matrix and domains were observed in the compatibilized system. Mechanical properties such as tensile strength. Young's modulus, flexural strength and modulus, as well as notched and un-notched impact strength of PA6/EPM-g-TAI blends were also found to improve gradually with increasing the content of grafted TAI.
Resumo:
Blends of linear low-density polyethylene (LLDPE) with polystyrene (PS) and blends of LLDPE with high-impact polystyrene (HIPS) were prepared through a reactive extrusion method. For increased compatibility of the two blending components, a Lewis acid catalyst, aluminum chloride (AlCl3), was adopted to initiate the Friedel-Crafts alkylation reaction between the blending components. Spectra data from Raman spectra of the LLDPE/PS/AlCl3 blends extracted with tetrahydrofuran verified that LLDPE segments were grafted to the para position of the benzene rings of PS, and this confirmed the graft structure of the Friedel-Crafts reaction between the polyolefin and PS. Because the in situ generated LLDPE-g-PS and LLDPE-g-HIPS copolymers acted as compatibilizers in the relative blending systems, the mechanical properties of the LLDPE/PS and LLDPE/HIPS blending systems were greatly improved. For example, after compatibilization, the Izod impact strength of an LLDPE/PS blend (80/20 w/w) was increased from 88.5 to 401.6 J/m, and its elongation at break increased from 370 to 790%. For an LLDPE/HIPS (60/40 w/w) blend, its Charpy impact strength was increased from 284.2 to 495.8 kJ/m(2). Scanning electron microscopy micrographs showed that the size of the domains decreased from 4-5 to less than 1 mum, depending on the content of added AlCl3.
Resumo:
An ethylene-propylene copolymer (EPM) was functionalized with an iso cyanate-bearing unsaturated monomer, allyl(3-isocyanate-4-tolyl) carbamate (TAI), with dicumyl peroxide as an initiator in a xylene solution. Fourier transform infrared (FTIR) was used to confirm the formation of EPM-g-TAI. The peak at 2273 cm(-1), characteristic of -NCO groups in EPM-g-TAI, revealed evidence of grafting. The grafting degree was determined with both chemical titration and FTIR. The grafting degree could be adjusted, and the maximum was over 6 wt % without any gelation. The molar mass distribution of EPM-g-TAI was narrower than that of EPM. The rheological behavior of both EPM-g-TAI and EPM was investigated with a rotational rheometer. The apparent viscosity of EPM-g-TAI was higher than that of EPM and increased with an increasing grafting degree of TAI. Surface analysis by contact-angle measurements showed that contact angles of EPM-g-TAI samples to a given polar liquid decreased with an increasing grafting degree of TAI. We also obtained the dispersion component of the surface free energy (gamma(S)(d)), the polar component of the surface free energy (gamma(S)(d)), and the total surface free energy (gamma(S) = gamma(S)(d) + gamma(S)(p)) of the grafted EPM. These parameters increased with the enhancement of the grafting degree, which gave us a quantitative estimation of the polar contribution of the grafted TAI to the total surface free energy of EPM-g-TAI.
Resumo:
Triblock copolymer PCL-PEG-PCL was prepared by ring-opening polymerization of epsilon-caprolactone (CL) in the presence of poly(ethylene glycol) catalyzed by calcium ammoniate at 60 degreesC in xylene solution. The copolymer composition and triblock structure were confirmed by H-1 NMR and C-13 WR measurements. The differential scanning calorimetry and wide-angle X-ray diffraction analyses revealed the micro-domain structure in the copolymer. The melting temperature T-c and crystallization temperature T-c of the PEG domain were influenced by the relative length of the PCL blocks. This was caused by the strong covalent interconnection between the two domains. Aqueous micelles were prepared from the triblock copolymer. The critical micelle concentration was determined to be 0.4-1.2 mg/l by fluorescence technique using pyrene as probe, depending on the length of PCL blocks, and lower than that of corresponding PCL-PEG diblock copolymers. The H-1 NMR spectrum of the micelles in D2O demonstrated only the -CH2CH2O- signal and thus confirmed. the PCL-core/PEG-shell structure of the micelles.
Resumo:
The miscibility and hydrogen-bonding interactions of carbon dioxide and epoxy propane copolymer to poly(propylene carbonate) (PPC)/poly(p-vinylphenol) (PVPh) blends were investigated with differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The single glass-transition temperature for each composition showed miscibility over the entire composition range. FTIR indicates the presence of strong hydrogen-bonding interassociation between the hydroxyl groups of PVPh and the oxygen functional groups of PPC as a function of composition and temperature. XPS results testify to intermolecular hydrogen-bonding interactions between the oxygen atoms of carbon-oxygen single bonds and carbon-oxygen double bonds in carbonate groups of PPC and the hydroxyl groups of PVPh by the shift of C-1s peaks and the evolution of three novel O-1s peaks in the blends, which supports the suggestion from FTIR analyses.