264 resultados para AMPEROMETRIC BIOSENSORS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A mediatorless H2O2 sensor based on coelectropolymerization of horse radish peroxidase (HRP) and o-phenylenediamine (o-PD) is described. The electrode responds to H2O2 in a few seconds and gives a current density of 73.3 nA 1 mu mol(-1) cm(-2) at -100 mV

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel device of multiple cylinder microelectrodes coupled with a parallel planar electrode was proposed. The feedback diffusion current at this device was studied using bilinear transformation of coordinates in the diffusion space, where lines of mass flux and equiconcentration are represented by orthogonal circular functions. The derived expression for the steady-state current shows that as the gap between cylindrical microelectrodes and planar electrode diminishes, greatly enhanced currents can be obtained with high signal-to-noise ratio. Other important geometrical parameters such as distance between adjacent microcylinders, cylinder radius, and number of microcylinders were also discussed in detail.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A method for the specific determination of cobalt based on reversed-phase liquid chromatography with amperometric detection via on-column complex formation has been developed. A water-soluble chelating agent, 1-(2-pyridylazo)-2-naphthol-6-sulphonic acid (PAN-6S), is added to the mobile phase and aqueous cobalt solutions are injected directly into the column to form in situ the cobalt-PAN-6S chelate, which is then separated from other metal PAN-6S chelates and subjected to reductive amperometric detection at a moderate potential of -0.3 V. Because the procedure eliminates the interference of oxygen and depresses the electrochemical reduction of the mobile phase-containing ligand PAN-6S, by virtue of the quasi:reversible electrode process of the cobalt-PAN-6S complex, a low detection limit of 0.06 ng can be readily obtained. Interference effects were examined for sixteen common metal species, and at a 5- to 8000-fold excess by mass no obvious interference was observed. The feasibility of the method as an approach to the specific analysis of cobalt in a hair sample has been demonstrated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A glassy carbon electrode coated with an electrodeposited film of mixed-valent cobalt oxide/cyanocobaltate (Co-O/CN-Co) enabled hydrazine compounds to be catalytically oxidized at the greatly reduced overpotential and in a wide operational pH range (pH 2.0-7.0). Electrocatalytic activity at the Co-O/CN-Co modified electrode was evaluated with respect to solution pH, film thickness, supporting electrolyte ions, potential scan rate, operating potential, concentration dependence and other variables. The Co-O/CN-Co film electrode was completely compatible with a conventional reversed-phase liquid chromatographic (RP-LC) system. Practical RP-LC amperometric detection (RP-LCEC) of hydrazines was performed. A dynamic linear response range over three orders of magnitude and a detection limit at the pmol level were readily obtained. The Co-O/CN-CO film electrode exhibited excellent electrocatalytic stability in the flowing streams.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel Eastman-AQ/Ni(II) chemically modified electrode (CME) produced by "double coating step" deposition of a poly(ester sulphonic acid) polymer film and Ni2+-containing crystalline species onto glassy carbon instead of a metallic nickel electrode exhibited stable electrocatalytic oxidation of numerous alpha-hydrogen compounds including carbohydrates, amines and amino acids. In cyclic voltammetry, the electrocatalysis appeared with an irreversible anodic wave at +0.55 V (vs. Ag/AgCl). The CME was adapted for constant-potential amperometric detection of these compounds in flow injection analysis. Using the CME, the linear response concentration range was between 1.0 x 10(-5) and 5.0 x 10(-2) mol/l and the detection limit was 5.0 x 10(-6) mol/l for glucose. The stability of the CME was adequate for routine quantitative application.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A microcarbon array electrode was modified by the placement of a Nafion film containing cobalt tetramethylpyridyl phorphyrin on its surface. This electrode was applied to the analysis of solution glucose when it was further modified by the immobilization of glucose oxidase on the outermost surface of the Nafion by the cross-linking of serum albumin with glutaraldehyde. The concomitant decrease in the concentration of oxygen, as it was consumed in the enzymatic reaction of glucose with glucose oxidase, was determined by either cyclic voltammetry or a double potential step method at the porphyrin-Nafion catalytic electrode. Glucose could be determined in the range of 0.01-4 mM rapidly, without interference from substances such as ascorbate or other saccharides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dispersion of alumina particles on a glassy-carbon surface serving as a modified electrode significantly enhances the amperometric detection of cysteine and glutathione following liquid chromatography. With an applied potential of 0.8 V vs. SCE, the detection limits were 1.2 ng for cysteine and 8 ng for glutathione and the electrode response was linear up to 600 ng for cysteine and 1.8-mu-g for glutathione. The modified electrode displayed high sensitivity and stability and was easy and inexpensive to prepare.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of chemically modified electrodes (CMEs) for liquid chromatography and flow-injection analysis is reviewed. Electrochemical detection with CMEs based on electrocatalysis, permselectivity, ion flow in redox films, and ion transfer across the water-solidified nitrobenzene interface is discussed in terms of improving the stability, selectivity, and scope of electrochemical detectors, and the detection of electroinactive substances. More than 90 references are included.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An electrochemical technique for the real-time detection of hydrogen peroxide (H2O2) was employed to describe respiratory burst activity (RBA) of phagocytes in plasma which can be used to evaluate the ability of immune system and disease resistance. The method is based upon the electric current changes, by redox reaction on platinum electrode of extracellular hydrogen peroxide (H2O2) released from phagocytes stimulated by the zymosan at 680 mV direct current (d.c.). Compared with the control, activation of respiratory burst by zymosan particles results in a high amperometric response, and a current peak was obtained during the whole monitoring process. The peak current was proved by addition Of Cu2+ and other controls, to be the result of intense release of H2O2 from phagocytes. The peak area was calculated and used to evaluate the quantity of effective H2O2, which represents the quantity of H2O2 beyond the clearance of related enzymes in plasma. According to Faraday's law, the phagocytes' ability of prawns to generate effective H2O2 was evaluated from 1.253 x 10(-14) mol/cell to 6.146 x 10(-14) mol/cell, and carp from 1.689 x 10(-15) Mol/Cell to 7.873 x 10(-1)5 mol/cell. This method is an acute and quick detection of extracellular effective H2O2 in plasma and reflects the capacity of phagocytes under natural conditions, which could be applied for selecting species and parents with high immunity for breeding in aquaculture. (c) 2007 Elsevier Ltd. All rights reserved.