269 resultados para utilization efficiency


Relevância:

20.00% 20.00%

Publicador:

Resumo:

By incorporating a new building block, 7,7,15,15-tetraoctyldinaphtho-s-indacene (NSI), into the backbone of poly(9,9-dioctylfluorene) (PFO), a novel series of blue light-emitting copolymers (PFO-NSI) have been developed. The insertion of the NSI unit into the PFO backbone leads to the increase of local effective conjugation length, to form low-energy fluorene-NSI-fluorene (FNF) segments that serve as exciton trapping sites, to which the energy transfers from the high-energy PFO segments. This causes these copolymers to show red-shifted emissions compared with PFO, with a high efficiency and good color stability and purity. The best device performance with a luminance efficiency of 3.43 cd . A(-1), a maximum brightness of 6 539 cd . m(-2) and CIE coordinates of (0.152, 0.164) was achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonviral vectors are safer than viral systems for gene therapy applications. However, the limited efficacy always prevents their being widely used in clinical practice. Aside from searching new gene nonviral vectors, many researchers focus on finding out new substances to improve the transfection efficiency of existent vectors. In this work, we found a transfection enhancer, nocodazole (NCZ), for dimethyldioctadecylammonium (DODAB, a cationic lipid) bilayer coated gold nanoparticles (AuNPs) mediated gene delivery. It was found that NCZ produces 3-fold transfection enhancement to HEK 293T cells assessed by flow cytometry (FCM). The result was further confirmed by luciferase assay, in which NCZ induced more than 5 times improvement in transfection efficiency after 48 h of transfection. The results from the inductively coupled plasma mass spectrometry (ICP-MS) and FCM showed that NCZ did not affect the internalization of DODAB-AuNPs/DNA complexes. The trafficking of the complexes by transmission electron microscopy (TEM) indicated that the interrupted transportation of the complexes to the lysosomes contributed greatly to the transfection enhancement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By incorporating two phosphorescent dyes, namely, iridium(III)[bis(4,6-difluorophenyl)-pyridinato-N,C-2']picolinate (Flrpic) for blue emission and bis(2-(9,9-diethyl-9H-fluoren-2-yl)-1-phenyl-1 H-benzoimidazol-N,C-3) iridium(acetylacetonate) ((fbi)(2)Ir(acac)) for orange emission, into a single-energy well-like emissive layer, an extremely high-efficiency white organic light-emitting diode (WOLED) with excellent color stability is demonstrated. This device can achieve a peak forward-viewing power efficiency of 42.5 lm W-1, corresponding to an external quantum efficiency (EQE) of 19.3% and a current efficiency of 52.8 cd A(-1). Systematic studies of the dopants, host and dopant-doped host films in terms of photophysical properties (including absorption, photoluminescence, and excitation spectra), transient photoluminescence, current density-voltage characteristics, and temperature-dependent electroluminescence spectra are subsequently performed, from which it is concluded that the emission natures of Flrpic and (fbi)(2)Ir(acac) are, respectively, host-guest energy transfer and a direct exciton formation process. These two parallel pathways serve to channel the overall excitons to both dopants, greatly reducing unfavorable energy losses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By codoping blue and orange phosphorescent dyes into a single host material, a highly efficient white organic light-emitting diode (WOLED) with Commission Internationale de L'Eclairage coordinates of (0.38, 0.43) at 12 V is demonstrated. Remarkably, this WOLED achieves reduced current efficiency roll-off, which slightly decreases from its maximum value of 37.3-31.0 cd/A at 1000 cd/m(2). The device operational mechanism is subsequently investigated in order to unveil the origin of the high performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An alternative way to optimize the emission characteristics of a microcavity top-emitting organic light-emitting diode (TOLED) based on a simple device structure is demonstrated via combining a comprehensive theoretical analysis in the microcavity effects with the experimental modification in the carrier injection of both electrodes. It can be seen that the resulting TOLED exhibits much higher efficiencies and a more saturated color than those of the corresponding conventional bottom-emitting device, as well as hardly detectable color shift with viewing angles. Such a strategy may be more feasible in practical application for active-matrix organic light-emitting diode displays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly efficient fluorescent white organic light-emitting diodes (WOLEDs) have been fabricated by using three red, green and blue, separately monochromatic emission layers. The red and blue emissive layers are based on 4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran (DCJTB) doped N,N'-di(naphthalene-1-yl)-N,N'-diphenyl-benzidine (NPB) and p-bis(p-N,N-diphenyl-amino-styryl) benzene (DSA-ph) doped 2-methyl-9,10-di(2-naphthyl) anthracene (MADN), respectively; and the green emissive layer is based on tris(8-hydroxyquionline)aluminum(Alq(3)) doped with 10-(2-benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7-tetramethyl- 1H,5H,1[H-(1)-benzopyropyrano(6,7-8-i,j)quinolizin-1]-one (C545T), which is sandwiched between the red and the blue emissive layers. It can be seen that the devices show stable white emission with Commission International de L'Eclairage coordinates of (0.41, 0.41) and color rendering index (CRI) of 84 in a wide range of bias voltages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By introducing tungsten oxide (WO3) doped N,N-'-di(naphthalen-1-yl)-N,N-'-diphenyl-benzidine (NPB) hole injection layer, the great improvement in device efficiency and the organic film morphology stability at high temperature were realized for organic light-emitting diodes (OLEDs). The detailed investigations on the improvement mechanism by optical, electric, and film morphology properties were presented. The experimental results clearly demonstrated that using WO3 doped NPB as the hole injection layer in OLEDs not only reduced the hole injection barrier and enhanced the transport property, leading to low operational voltage and high efficiency, but also improved organic film morphology stability, which should be related to the device stability. It could be seen that due to the utilization of WO3 doped NPB hole injection layer in NPB/tris (8-quinolinolato) aluminum (Alq(3))-based device, the maximum efficiency reached 6.1 cd A(-1) and 4.8 lm W-1, which were much higher than 4.5 cd A(-1) and 1.1 lm W-1 of NPB/Alq(3) device without hole injection layer. The device with WO3 doped NPB hole injection layer yet gave high efficiency of 6.1 cd A(-1) (2.9 lm W-1) even though the device was fabricated at substrate temperature of 80 degrees C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A highly efficient and colour-stable three-wavelength white organic light-emitting diode with the structure of indium tin oxide (ITO)/MoO3/N,N'-diphenyl-N,N'-bis (1-naphthylphenyl)-1,1'-biphenyl-4,4'-diamine (NPB)/4,4'-N,N'-dicarbazole-biphenyl (CBP): bis(2,4-diphenylquinolyl-N,C-2') iridium( acetylacetonate) (PPQ)(2)Ir(acac)/NPB/p-bis(p-N,N-diphenyl-aminostyryl)benzene (DSA-Ph):2-methyl-9,10-di(2-naphthyl) anthracene (MADN)/tris (8-hydroxyquinoline) aluminum (AlQ): 10-(2-Benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H,5H,11H-(1)-benzopyropyrano(6,7-8-i,j)quinolizin-11-one (C545T)/AlQ/LiF/Al is fabricated and characterized. A current efficiency of 12.3 cdA(-1) at an illumination-relevant brightness of 1000 cd m(-2) is obtained, which rolls off slightly to 10.3 cdA(-1) at a rather high brightness of 10 000 cd m(-2). We attribute this great reduction in the efficiency roll-off to the wise management of singlet and triplet excitons between emissive layers as well as the superior charge injection and diffusion balance in the device.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The amplified spontaneous emission properties of a 2, 1, 3-benzothiadiazole attached polyfluorene semiconductor polymer were studied. The conjugated polymer shows a high photoluminescence quantum efficiency of 67% and emits a narrowed blue emissive spectrum with a full width at half-maximum of 3.6 nm when optically pumped, indicating better lasing action. A threshold energy as low as 0.22 mJ pulse(-1) cm(-2), a net gain of 40.54 cm(-1) and a loss of 7.8 cm(-1) were obtained, demonstrating that this conjugated polymer could be a promising candidate as the gain medium for the fabrication of blue polymer lasers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lead(IV) dioxide (PbO2) has been used as the electron injection layer (EIL) to realize high-efficiency inverted top-emitting organic light-emitting diodes (I-TOLEDs). It can be seen that the inserting of the PbO2 EIL significantly reduces operational voltage, thus greatly improving the current efficiency and power efficiency of fabricated I-TOLEDs. The 10-(2-benzothiazolyl)-1, 1, 7, 7-tetramethyl-2, 3, 6, 7-tetrahydro-1H, 5H, 11H-[1] benzopyrano [6, 7, 8-ij] quinolizin-11-one (C545T)-based I-TOLEDs with the PbO2 EIL exhibit a maximum current efficiency of 31.6 cd A(-1) and a maximum power efficiency of 14.3 lm W-1, which are both higher than 22.5 cd A(-1) and 5.4 lm W-1 of the I-TOLEDs with LiF as the EIL respectively. A detailed analysis with respect to the role mechanism of PbO2 in electron injection has been presented. The improvement in EL performance is attributed to the formation of the interfacial dipoles at the electrode interface due to charge transfer between PbO2 and Alq(3).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We employed a binary spacer of orderly conjugated 3,4-ethyldioxythiophene and thienothiophene to construct a wide-spectral response organic chromophore for dye-sensitized solar cells, exhibiting a high power conversion efficiency of 9.8% measured under irradiation of 100 mW cm(-2) air mass 1.5 global (AM1.5G) sunlight and an excellent stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high-efficiency and low-cost spongelike Au/Pt core/shell electrocatalyst with hollow cavity has been facilely obtained via a simple two-step wet chemical process. Hollow gold nanospheres were first synthesized via a modified galvanic replacement reaction between Co nanoparticles in situ produced and HAUCl(4). The as-prepared gold hollow spheres were employed as seeds to further grow spongelike Pt shell. It is found that the surface of this hybrid nanomaterial owns many Pt nanospikes, which form a spongelike nanostructure. All experimental data including scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and UV-vis-near-infrared spectroscopy have been employed to characterize the obtained Au/Pt hybrid nanomaterial. The rapid development of fuel cell has inspired us to investigate the electrocatalytic properties for dioxygen and methanol of this novel hybrid nanomaterial. Spongelike hybrid nanomaterial mentioned here exhibits much higher catalytic activity for dioxygen reduction and methanol oxidation than the common Pt electrode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple and facile procedure to synthesize a novel hybrid nanoelectrocatalyst based on polyaniline (PANI) nanofiber-supported supra-high density Pt nanoparticles (NPs) or Pt/Pd hybrid NPs without prior PANI nanofiber functionalization at room temperature is demonstrated. This represents a new type of ID hybrid nanoelectrocatalyst with several important benefits. First, the procedure is very simple and can be performed at room temperature using commercially available reagents without the need for templates and surfactants. Second, ultra-high density small "bare" Pt NPs or Pt/Pd hybrid NPs are grown directly onto the surface of the PANI nanofiber, without using any additional linker. Most importantly, the present PANI nanofiber-supported supra-high density Pt NPs or Pt/Pd hybrid NPs can be used as a signal enhancement element for constructing electrochemical devices with high performance.