372 resultados para spin polarization
Resumo:
A new unsymmetrical photochromic diarylethene 1a is synthesized, and the photochromic properties of it are also investigated. The compound exhibits good photochromism with UV/ visible light irradiation. Compound 1a in polymethyl methacrylate ( PMMA ) film changes color upon 313- nm light irradiation from colorless to blue, in which the absorption maximum is observed at 587 nm. Photon- mode polarization multiplexing holographic optical recording is performed successfully using this compound as a recording medium. In the diarylethene 1b/ PMMA film, polarization multiplexing hologram recording and retrieval, and a combination with the angular multiplexing scheme, are demonstrated systematically. The results indicate that recording capacity can be significantly improved with the combined method of polarization and angular multiplexing holographic recording. (C) 2008 Society of Photo- Optical Instrumentation Engineers.
Resumo:
The mechanism of beam splitting and principle of wide-field-of-view compensation of modified Savart polariscope in the wide-field-of-view polarization interference imaging spectrometer (WPIIS) are analyzed and discussed. Formulas for the lateral displacement and optical path difference (OPD) produced by the modified Savart polariscope are derived by ray-tracing method. The theoretical and practical guidance is thereby provided for the study, design, modulation, experiment and engineering of the polarization interference imaging spectrometers and other birefringent Fourier-transform spectrometers based on Savart polariscopes. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The influence of the orientations of both polarizer and analyzer on modulation depth of spatially distributed interferograms for static polarization interference imaging spectrometer (SPIIS) is analyzed. A generally, theoretical relationship to determine the modulation depth of a SPIIS is derived. The special cases of maximum modulation depth (V = 1) and the minimum modulation depth (V = 0) are examined. Our results will provide a theoretical and practical guide for studying, developing and engineering polarization interference imaging spectrometers. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
This paper describes the design of an interference imaging spectrometer. A static Polarization Imaging Spectrometer (PIS) based on a single Savart polariscope has been developed. It produces the interferogram and target's image in the spatial domain which are recorded by using a two-dimensional (2D) CCD detector. Imaging lens localizes the interference fringes and target's image coincident with the plane of detector, thereby facilitating an extremely compact design. The spectrum of the input light is reconstructed through the Fourier-transform of the interferogram. The total optics is as small as 20 x 6 cm phi in size and the spectral resolution of the prototype system is 97.66 cm(-1) between 25,000 and 10, 000 cm(-1). The polarization interference imaging device has advantages of ultra-compact size, wide field of view, high throughput and without any moving parts. (C) 2002 Published by Elsevier Science B.V.
Resumo:
Solid films containing phosphorus impurities were formed on p-type silicon wafer surface by traditional spin-on of commercially available dopants. The doping process is accomplished by irradiating the sample with a 308 nm XeCl pulsed excimer laser. Shallow junctions with a high concentration of doped impurities were obtained. The measured impurity profile was ''box-like'', and is very suitable for use in VLSI devices. The characteristics of the doping profile against laser fluence (energy density) and number of laser pulses were studied. From these results, it is found that the sheet resistance decreases with the laser fluence above a certain threshold, but it saturates as the energy density is further increased. The junction depth increases with the number of pulses and the laser energy density. The results suggest that this simple spin-on dopant pre-deposition technique can be used to obtain a well controlled doping profile similar to the technique using chemical vapor in pulsed laser doping process.
Resumo:
Hot electrons excited from the valence band by linearly polarized laser light are characterized by certain angular distributions in momenta. Owing to such angular distributions in momenta, the photoluminescence from the hot electrons shows a certain degree of polarization. A theoretical treatment of this effect observed in the photoluminescence in quantum wells is given, showing that the effect depends strongly on heavy and light hole mixing. The very large disparity between the experimentally observed and theoretically expected values of the degree of polarization in the hot-electron photoluminescence suggests the presence of random quasielastic scattering. The effects of such additional scattering and the presence of a perpendicular magnetic field are incorporated into the theory. it is shown that the measurements of the degree of polarization observed in the hot electron photoluminescence, with and without an applied perpendicular magnetic field can serve to determine the time constants for both LO-phonon inelastic and random quasielastic scattering. As an example, these time constants are determined for the experiments reported in the literature.
Resumo:
The spin-reorientation phenomenon in Nd2Fe14B has been investigated using an angular dependent free energy approach. A magnetic Hamiltonian which includes the crystal electric field term and the exchange term has been established using realistic band structure results. The temperature dependence of the molecular field is accounted for by introducing the Brillouin function and the magnetic Hamiltonian is diagonalized within the ground state multiplet of the Nd ion. The eigenstates are then used to form the partition function for the free energy. At each temperature, the direction of the molecular field is obtained by searching for the minimum in the angular parameter space of the free energy. Our calculations show that for Nd2Fe14B, the net magnetic anisotropy direction is canted away from the c axis at a temperature close to the experimentally reported spin-reorientation temperature of 150 K. The temperature dependence of the magnetic structure is found to be very sensitive to the size of the second order crystal field parameter B20.
Resumo:
The linear character of the polarization of the luminescence in porous Si is studied experimentally, and the corresponding luminescence characteristics in quantum wires are studied theoretically using a quantum cylindrical model in the framework of the effective-mass theory. From the experimental and theoretical results it is concluded that there is a stronger linear polarization parallel to the wire direction than there is perpendicular to the wire, and that it is connected with the valence band structure in quantum confinement in two directions. The theoretical photoluminescence spectra of the parallel and perpendicular polarization directions, and the degree of polarization as functions of the radius of the wire and the temperature are obtained for In0.53Ga0.47As quantum wires and porous silicon. From the theory, we demonstrated that the degree of polarization decreases with increasing temperature and radius, and that this effect is more apparent for porous Si. The theoretical results are in good agreement with the experimental results for the InGaAs quantum wires, and in qualitative agreement with those for the porous silicon.
Resumo:
Spin splitting of conduction subbands in Al_(0.3)Ga_(0.7)As/GaAs/Al_xGa_(1-x)As/Al_(0.3)Ga_(0.7)As step quantum wells induced by interface and electric field related Rashba effects is investigated theoretically by the method of finite difference. The dependence of the spin splitting on the electric field and the well structure, which is controlled by the well width and the step width, is investigated in detail. Without an external electric field, the spin splitting is induced by an in terface related Rashba term due to the built-in structure inversion asymmetry. Applying the external electric field to the step QW, the Rashba effect can be enhanced or weakened, depending on the well structure as well as the direction and the magnitude of the electric field. The spin splitting is mainly controlled by the interface related Rashba term under a negative and a stronger positive electric field, and the contribution of the electric field related Rashba term dominates in a small range of a weaker positive electric field.A method to determine the interface parameter is proposed.The results show that the step QWs might be used as spin switches.