339 resultados para ZIEGLER-NATTA POLYMERIZATION
Resumo:
The oxygen permselectivity of a poly[1-(trimethylsilyl)-1-propyne) (PTMSP) membrane was drastically improved by plasma polymerization of fluorine-containing monomers. The effects of such plasma polymerization conditions as deposition time, plasma power an
Resumo:
(eta(3)-C3H5)(2)CeCl5Mg2(tmed)(2) combined with HAl(i-Bu)(2) or Al(i-Bu)(3) can initiate the polymerization of isoprene with about 50% of the cis-1, 4 microstructure contained in the polymer. The insertion reaction of isoprene occurring between Ce3+ and e
Helix-induced asymmetric polymerization mediated by a living helical chain from chiral methacrylates
Resumo:
Poly(styrene-acrylic acid)-lanthanide (Ln.PSAA) and poly(ethylene-acrylic acid)-neodymium (NdPEAA) complexes have been prepared and characterized. The infrared and X-ray photoelectron spectra indicate that the lanthanide complexes possess the bidentate carboxylate structure Ln-O-C(R)-O (see structure B in text). The catalytic behavior of the complexes has been described. The catalytic activities of Nd.PSAA and Nd.PEAA are much greater than that of the corresponding low molecular weight catalyst for butadiene polymerization. The activities of various individual lanthanide elements are quite different from one another. Neodymium shows the highest activity. Europium, samarium and the heavy elements exhibit very low or no activities. The cis-1,4 content of the polybutadiene obtained is not affected by different lanthanide elements in the series. The complex with the intermediate content of the functional group has a higher activity than the others. The polymer-supported lanthanide complexes having different constitutions have different catalytic activities. When the molar ratio of lanthanide to the functional group is ca. 0.2, the activity of the complex is in the optimum state. The activity is influenced by the dispersion of the lanthanide metal immobilized on the polymer chain. Catalytic activity can be improved by adding other metals to the catalyst system.
Resumo:
Rare earth trifluoroacetates, Ln(CF3CO2)(3) (Ln = thirteen rare earth elements), combined with R(n)AlH(3-n) (R = methyl, octyl, n = 3; R = ethyl, i-Butyl, n = 2, 3) were used as catalysts for the polymerization of tetrahydrofuran (THF). The activity increased by adding propylene oxide (PO), as a promoter, to the polymerization system, producing high molecular weight polytetrahydrofuran (PTHF). The effects of Ln, PO/Ln, and Al/Ln, and others on the polymerization of THF were also studied. (C) 1993 John Wiley & Sons, Inc.
A NEW THERMOPLASTIC POLYIMIDE COMPOSITE PREPARED BY THE POLYMERIZATION OF MONOMER REACTANTS APPROACH
Resumo:
A novel amorphous thermoplastic polyimide (PTI) is being developed as a potential matrix resin for advanced composites. This paper describes the manufacture of the resin, prepreg, and processing of the composite. The chemical and physical behavior of the resin during the processing was determined by infrared spectroscopy and rheology. The influence of processing conditions on the composite properties was investigated. Mechanical properties of the unidirectional carbon fiber/PTI laminates were also presented.
Resumo:
The complex of (CH3Cp)2Yb . DME (DME = dimethoxyethane) has been synthesized by the reduction with metallic sodium of the corresponding chloride (CH3CP)2YbCl. (CH3CP)2Yb . DME crystallized from DME in the monoclinic space group Cm, with cell constants a = 11.068(3), b = 12.338(4), c = 12.479(4) angstrom; beta = 100.51(2)-degrees, V = 1675(l) angstrom3, and D0 = 1.66 g/cm3 for Z = 4. Least-squares refinement of 1420 unique observed reflections led to final R of 0.0487. This complex can be used as a catalyst for the polymerization of methyl methacrylate (MMA).
Resumo:
The graft polymerization of acrylic acid(AA) on poly(vinyl alcohol) (PVAL) has been investigated by using either potassium persulfate (KPS) or ceric ammonium nitrate(CAN) as an initiator. In the case of KPS initiation, the formation of the graft polymer always lags behind the homopolymer formation. The graft polymer is separated by acetone, and the increase of reaction temperature favors the homopolymer formation at the early stage. In the case of CAN initiation, graft polymers with a high PAA content can hardly be obtained when the polymerization is performed under nitrogen and at < 0.06 mol/L HNO3 concentration. It has been found that incorporation of a small amount of oxygen in a protective nitrogen gas accelerates markedly the graft polymerization, and that the resulting graft polymers can not be separated by acetone precipitation technique in most cases. The Dalian nitrogen(containing 0.7% oxygen) is a good protective gas for CAN-initiated PVAL-AA graft polymerization.
Resumo:
In this paper, hydrophilic microporous cellulose nitrate membranes have been surface-modified by plasma polymerization of octafluorocyclobutane (OFCB). The microporous composite membranes with a hydrophilic layer sandwiched between two hydrophobic layers have been obtained. The obtained composite membranes have been used in a membrane distillation (MD) process and have exhibited good performance. The effects of polymerization conditions, such as glow-discharge power and deposition time, on the structures and MD performances of the obtained composite membranes have been investigated by SEM, X-ray microscopical analysis, and XPS. The polymerization conditions should be as mild as possible in order to prepare the hydrophobic composite membrane with good MD performance. The typical MD behaviors of the obtained hydrophobic composite membranes are in agreement with that of hydrophobic membranes directly prepared from hydrophobic polymeric materials, like PVDF, PTFE, or PP.
Resumo:
The electrochemical behaviour of N-benzylaniline polymerization is determined by the nature of the electrolyte. The voltammograms for a poly-N-benzylaniline modified Pt electrode prepared in 1 M HCl (abbreviated to PBAn(HCl)), and 1 M H2SO4 (PBAn(H2SO4)) tested in 1 M hydrochloric, sulfuric, and perchloric acid were almost superimposable. The polymer film electrode prepared in 1 M HClO4 (abbreviated to PBAn(HClO4)) is electroinactive, and exhibits only charging behaviour in 1 M HClO4 solution and can be activated in hydrochloric or other acid electrolytes with a smaller anion. These interesting phenomena are explained in terms of the anions catalyzing the loss of benzyl groups.
Resumo:
The chemical polymerization of ortho-methylaniline (MAn) is performed in aqueous solution of six protonic acids. The MAn polymerization conversion, and the electrical conductivity and doping level as well as molecular chain structure of the polymers obtained depend not only on the acid concentration but also on their acidity and molecular size.