369 resultados para UV-vis-NR absorbance spectrocopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

3-Mercaptopropionic add monolayer protected gold nanoclusters (MPA-MPCs) were synthesized and characterized by transmission electron microscopy, UV-Vis spectroscopy, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The exact value of quantized double-layer capacitance of MPCS in aqueous media was obtained by differential pulse voltammograms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two new light-emitting PPV-based copolymers bearing electron-withdrawing triazole unit in the main chain have been synthesized by Wittig reaction between triazole diphosphonium salt and the corresponding dialdehyde monomers, respectively. Their optical and physical properties are characterized by UV-vis, photoluminescence (PL), TGA and DSC. The resulting copolymers are highly soluble in common organic solvents and have high Tg and Td values. They show blue-greenish fluorescence in solution (lambda(max) 502 and 508 nm) and green fluorescence in the solid state (lambda(max) 520 and 526 nm), respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two PPV-based copolymers consisting siloxane linkage have been synthesized by melt condensation of bisphenol and dianilinodimethylsilane. The rigid PPV segments act as chromosphere and allow fine turning of band gap for blue-light emission, while the flexible siloxane units lead to the effective interruption of conjugation and the enhancement of solubility. The UV-vis absorption, photoluminescent and eletroluminescent properties have been studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A PPV derivative containing bulky tetraphenylmethane side chains was synthesised. Its optical properties were examined. Compared to its parent PPV polymer, its UV-Vis absorption and PL showed less red-shift from solution to film, its PL showed much less concentration quenching effect and higher efficiency, its EL device showed 9-fold enhanced efficiency. These improvements were attributed to weakened inter-chain interaction caused by the tetraphenylmethane group.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Perovskite-type organic/inorganic hybrid layered compound (C6H5C2H4NH3)(2)PbI4 was synthesized. The patterning Of (C6H5C2H4NH3)(2)PbI4 thin films on silicon substrate was realized by the micromolding in capillaries (MIMIC) process, a kind of soft lithography. Bright green luminescent stripes with different widths (50, 15, 0.8 mum) have been obtained. The structure and optical properties Of (C6H5C2H4NH3)(2)PbI4 films were characterized by X-ray diffraction (XRD), UV/Vis absorption and photoluminescence excitation and emission spectra, respectively. It is shown that the organic-inorganic layered (C6H5C2H4NH3)(2)PbI4 film was c-axis oriented, paralleling to the substrate plane. Green exciton emission at 525 nm was observed in the film, and the explanations for it were given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocrystalline Y2O3:Eu3+ phosphor films and their patterning were fabricated by a Pechini sol-gel process combined with a soft lithography. X-ray diffraction (XRD), thermogravimetric and differential thermal analysis (TG-DTA), atomic force microscopy (AFM), optical microscopy, UV/vis transmission and photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 500 degreesC and the crystallinity increased with the elevation of annealing temperatures. Uniform and crack free non-patterned phosphor films were obtained, which mainly consisted of grains with an average size of 70 nm. Using micro-molding in capillaries technique, we obtained homogeneous and defects-free patterned gel and crystalline phosphor films with different stripe widths (5, 10, 20 and 50 mum). Significant shrinkage (50%) was observed in the patterned films during the heat treatment process. The doped Eu3+ showed its characteristic emission in crystalline Y2O3 phosphor films due to an efficient energy transfer from Y2O3 host to them. Both the lifetimes and PL intensity of the Eu3+ increased with increasing the annealing temperature from 500 to 900 degreesC, and the optimum concentrations for Eu3+ were determined to be 5 mol%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocrystalline Gd2O3:A (A = Eu3+, Dy3+, Sm3+, Er3+) phosphor films and their patterning were fabricated by a Pechini sol-gel process combined with a soft lithography. X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and optical microscopy, UV/vis transmission and photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 500 degreesC and that the crystallinity increased with the elevation of annealing temperatures. Uniform and crack free non-patterned phosphor films were obtained by optimizing the composition of the coating sol, which mainly consisted of grains with an average size of 70 nm and a thickness of 550 nm. Using micro-molding in capillaries technique, we obtained homogeneous and defects-free patterned gel and crystalline phosphor films with different stripe widths (5, 10, 20 and 50 mum). Significant shrinkage (50%) was observed in the patterned films during the heat treatment process. The doped rare earth ions (A) showed their characteristic emission in crystalline Gd2O3 phosphor films due to an efficient energy transfer from Gd2O3 host to them. Both the lifetimes and PL intensity of the rare earth ions increased with increasing the annealing temperature from 500 to 900 degreesC, and the optimum concentrations for Eu3+, Dy3+, sm(3+), Er3+ were determined to be 5, 0.25, 1 and 1.5 mol% of Gd3+ in Gd2O3 films, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rhodamine B (RB)-doped organic-inorganic silica films and their patterning were fabricated by a sol-gel process combined with a soft lithography. The resulted film samples were characterized by atomic force microscope (AFM), optical microscope and UV/Vis absorption and photoluminescence excitation and emission spectra. The effects of the concentration of the RB dye and heat treatment temperature on the optical properties of the hybrid silica films have been studied. Four kinds of patterning structures with film line widths of 5, 10, 20 and 50 mum have been obtained by micromolding in capillaries by a soft lithography technique. The RB-doped hybrid silica films present a red color, with an excitation and emission bands around 564 and 585 mum, respectively. With increasing the RB concentration, the emission intensity of the RB-doped hybrid silica films increases and the emission maximum presents a red shift. The emission intensity of the films decreases with increasing the heat treatment temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tetrakis (N-methylpyridyl) porphyrinato] cobalt (CoTMPyP) and 1:12 silicotungstic acid (SiW12) were alternately deposited on a 4-aminobenzoic acid (4-ABA)-modified glassy carbon electrode through a layer-by-layer method. The resulting organic-inorganic hybrid films were characterized by cyclic voltammetry (CV) and UV/vis absorption spectroscopy. We proved that the prepared multilayer films are uniform and stable. SiW12-containing multilayer films (SiW12 as the outermost layer) exhibit remarkable electrocatalytic activity for the hydrogen evolution reaction (HER). The kinetic constants for HER were comparatively investigated at different layers Of SiW12/CoTMPyP multilayer film-modified electrodes by hydrogen evolution voltammetry. In addition, rotating disk electrode (RDE) and rotating ring-disk electrode (RRDE) voltammetric methods confirm that SiW12/CoTMPyP (CoTMPyP as the outermost layer) multilayer films catalyze almost a two-electron reduction of O-2 to H2O2 in pH 1-6 buffer solutions. Furthermore, P2W18/CoTMPyP films were also assembled, and their catalytic activity for HER is very different from that Of SiW12/CoTMPyP multilayer films.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One-pot preparation of shell-type silver-gold bimetallic nanostructures with hollow interiors and bearing nanospikes, based on colloid seed-engaged replacement reaction and colloid-mediated deposition reactions, has been reported. Heating-induced evolution of Ag-Au bimetallic nanoshells can lead to spontaneous production of nanospikes on the colloid surface. The hollow interior structure and bimetallic nature of the as-prepared colloids are characterized by transmission electron microscopy (TEM), UV-vis spectroscopy, and X-ray photoelectron spectroscopy (XPS).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three novel supramolecular assemblies constructed from polyoxometalate and crown ether building blocks, [(DB18C6)Na(H2O)(1.5)](2)Mo6O19.CH3CN, 1, and [{Na(DB18C6)(H2O)(2)}(3)(H2O)(2)]XMo12O40.6DMF.CH3CN (X = P, 2, and As, 3; DB18C6 = dibenzo-18-crown-6; DMF = N,N-dimethylfomamide), have been synthesized and characterized by elemental analyses, IR, UV-vis, EPR, TG, and single crystal X-ray diffraction. Compound 1 crystallizes in the tetragonal space group P4/mbm with a = 16.9701(6) Angstrom, c = 14.2676(4) Angstrom, and Z = 2. Compound 2 crystallizes in the hexagonal space group P6(3)/m with a = 15,7435(17) Angstrom, c = 30.042(7) Angstrom, gamma = 120degrees, and Z = 2. Compound 3 crystallizes in the hexagonal space group P6(3)/m with a = 15.6882(5) Angstrom, c = 29.9778(18) Angstrom, gamma = 120degrees, and Z = 2. Compound 1 exhibits an unusual three-dimensional network with one-dimensional sandglasslike channels based on the extensive weak forces between the oxygen atoms on the [Mo6O19](2-) polyoxoanions and the CH2 groups of crown ether molecules, Compounds 2 and 3 are isostructural, and both contain a novel semiopen cagelike trimeric cation [{Na(DB18C6)(H2O)(2)}(3)(H2O)(2)](3+). In their packing arrangement, an interesting 2-D "honeycomblike" "host" network is formed, in which the [XMo12O40](3-) (X = As and P) polyoxoanion "guests" resided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a simple route for the preparation of Pt nanoparticles is described. PtCl62- and [tetrakis-(N-methylpyridyl)porphyrinato] cobalt (CoTMPyP) were assembled on a 4-aminobenzoic acid modified glassy carbon electrode through the layer-by-layer method. The three-dimensional Pt nanoparticle films are directly formed on an electrode surface by electrochemical reduction of PtCl62- sandwiched between CoTMPyP layers. Regular growth of the multilayer films is monitored by UV-vis spectroscopy. X-ray photoelectron spectroscopy verifies the constant composition of the multilayer films containing Pt nanoparticles. Atomic force microscopy proves that the as-prepared Pt nanoparticles are uniformily distributed with average particle diameters of 6-10 nm. The resulting multilayer films containing Pt nanoparticles on the modified electrode possess catalytic activity for the reduction of dissolved oxygen. Rotating disk electrode voltammetry and rotating ring-disk electrode voltammetry confirm that Pt nanoparticle containing films can catalyze an almost four-electron reduction of O-2 to water in 0.5 M H2SO4 solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel sandwich-type compound, Na-12[Fe-4(H2O)(2)(As2W15O56)2].41H(2)O, has been synthesized. The compound was well-characterized by means of IR, UV-vis, W-183 NMR and elemental analyses. The compound crystallizes in the triclinic, P (1) over bar symmetry group. The structure of the compound is similar to that of Na-16[M-4(H2O)(2)(As2W15O56)(2)].nH(2)O (M = Cu, Zn, Co, Ni, Mn, Cd), and consists of an oxo-aqua tetranuclear iron core, [(Fe4O14)-O-III(H2O)(2)], sandwiched by two trivacant alpha-Wells-Dawson structural moieties, alpha-[As2W15O56]. Redoxelectrochemistry of the compound has been studied in buffer solutions at pH = 4.7 using polarography and cyclic voltammetry ( CV). The compound exhibited four one-electron couples associated with the Fe(III) center followed by three four-electron redox processes attributed to the tungsten-oxo framework. The compound-containing monolayer and multilayer films have been fabricated on a 4-aminobenzoic acid modified glassy carbon electrode surface by alternating deposition with a quaternized poly(4-vinylpyridine) partially complexed with [Os(bpy)(2)Cl](2+/-). CV, X-ray photoelectron spectroscopy (XPS), UV-vis spectroscopy and atomic force microscopy (AFM) have been used to characterize the multilayer films.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new multifunctional multilayer films consisting of tris(2,2'-bipyridyl)ruthenium(II) (Rubpy) and sodium decatungstate (W-10) have been prepared by the layer-by-layer (LbL) self-assembly method on ITO substrate. X-ray photoelectron spectra (XPS) confirmed the existence of W10 and Rubpy. Cyclic voltammetry (CV) and UV-Vis spectroscopy demonstrated the uniform assembly of (W-10/Rubpy) multilayer films. The multilayer films possess electrocatalytic activities on the reduction of iodate and oxidation of oxalate. Moreover, the films exhibited electrochemiluminescence (ECL) with tripropylamine (abbreviated as TPA) as the coreactant and the ECL response was proportional to the number of (W-10/Rubpy) layers. These characteristics of the multilayer films might find potential applications in the field of sensors and materials fields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrooxidation of L-dopa at GC electrode was studied by in situ UV-vis spectroelectrochemistry (SEC) and cyclic voltammetry. The mechanism of electrooxidation and some reaction parameters were obtained. The results showed that the whole electrooxidation reaction of L-dopa at glassy carbon (GC) electrode was an irreversible electrochemical process followed by a chemical reaction in neutral solution (EC mechanism). The spectroelectrochemical data were treated by the double logarithm method together with nonlinear regression, from which the formal potential E-0 = 228 mV, the apparent electron-transfer number of the electrooxidation reaction an = 0.376 (R = 0.99, SD = 0.26), the standard electrochemical rate constant k(0) (3.93 +/- 0.12) x 10(-)4 cm s(-1) (SD = 1.02 x 10(-2)), and the formation equilibrium constant of the following chemical reaction k(c)= (5.38+/-0.34) x 10(-1) s(-1) (SD = 1.02 x 10(-2)) were also obtained.