253 resultados para Stokes, Natalie,
Resumo:
上转换材料是一种能将看不见的红外光变为可见光的一种新型功能材料,其能将几个红外光子合并成一个可见光子、也称为多光子材料。这种反Stokes发光材料具有重要的理论意义和实用价值,为此,自1966年Auzel提出以后就引起人们的重视,近年来又有许多新的报导。不同的上转换材料能将红外光转变成红、绿或兰等颜色可见光,由于绿光处于视觉函数的峰值部份,且一般发绿光的上转换材料相对强度较好,因此研究与应用较多。国内外曾将红外变可见上转换材料用于固体灯,而我们首先将其用于Nd~(3+)激光和0.9μm半导体激光显示,已取得良好的效果,并作为某些激光器的配件。目前所使用的上转换材料显示片是将上转换材料涂在铝片或玻璃片上,铝片不能透光限制了它的应用,而玻璃片易碎和容易脱
Resumo:
The tess potential-concentration curve was first applied to measure the concentration of an alloy. Attempt to use the V-c curve of Al-Li alloy in measuring the diffusion coeffictent of Li atom in liquid aluminium with anode chronopotentiometry at 720℃, was made and D_(Li/Al=4.94×10~(-5)cm~2·s~(-1) was obtained. The value is well consistent wish the theoretical value, D_(Li/Al)=4.85×10~(-5)cm~2·s~(-1) in terms of Stokes-Einstein equation.
Resumo:
首次尝试利用开路电位-浓度曲线法测定合金的浓度,并用阳极计时电位法快速测定Li在液态Al中的扩散系数,720℃下Li在液态Al中的扩散系数D_(Li/Al)=4.94×10~(-5)cm~2·s~(-1),与根据Stokes-Einstein方程计算得到的理论值D_(Li/Al)=4.85×10~(-5)cm~2·s~(-1)相吻合。
Resumo:
相干反斯托克斯喇曼光谱(Coherent Anti-Stokes Raman Spectra,简称CARS)是一种非线性光学混频过程。同时使用两条入射激光束聚焦于样品,输出相当于反-斯托克斯频率光束。量子效率可达1%,散射强度比自发喇曼谱高10~5倍以上,连续CARS谱分辩率为0.01cm~(-1)。这种具有高空间分辩、高抗荧光干扰、高分辩率及高效率等特点的CARS技术,
Resumo:
Because of the intrinsic difficulty in determining distributions for wave periods, previous studies on wave period distribution models have not taken nonlinearity into account and have not performed well in terms of describing and statistically analyzing the probability density distribution of ocean waves. In this study, a statistical model of random waves is developed using Stokes wave theory of water wave dynamics. In addition, a new nonlinear probability distribution function for the wave period is presented with the parameters of spectral density width and nonlinear wave steepness, which is more reasonable as a physical mechanism. The magnitude of wave steepness determines the intensity of the nonlinear effect, while the spectral width only changes the energy distribution. The wave steepness is found to be an important parameter in terms of not only dynamics but also statistics. The value of wave steepness reflects the degree that the wave period distribution skews from the Cauchy distribution, and it also describes the variation in the distribution function, which resembles that of the wave surface elevation distribution and wave height distribution. We found that the distribution curves skew leftward and upward as the wave steepness increases. The wave period observations for the SZFII-1 buoy, made off the coast of Weihai (37A degrees 27.6' N, 122A degrees 15.1' E), China, are used to verify the new distribution. The coefficient of the correlation between the new distribution and the buoy data at different spectral widths (nu=0.3-0.5) is within the range of 0.968 6 to 0.991 7. In addition, the Longuet-Higgins (1975) and Sun (1988) distributions and the new distribution presented in this work are compared. The validations and comparisons indicate that the new nonlinear probability density distribution fits the buoy measurements better than the Longuet-Higgins and Sun distributions do. We believe that adoption of the new wave period distribution would improve traditional statistical wave theory.
Resumo:
The response of near-surface current profiles to wind and random surface waves are studied based on the approach of Jenkins [1989. The use of a wave prediction model for driving a near surface current model. Dtsch. Hydrogr. Z. 42,134-149] and Tang et al. [2007. Observation and modeling of surface currents on the Grand Banks: a study of the wave effects on surface currents. J. Geophys. Res. 112, C10025, doi:10.1029/2006JC004028]. Analytic steady solutions are presented for wave-modified Ekman equations resulting from Stokes drift, wind input and wave dissipation for a depth-independent constant eddy viscosity coefficient and one that varies linearly with depth. The parameters involved in the solutions can be determined by the two-dimensional wavenumber spectrum of ocean waves, wind speed, the Coriolis parameter and the densities of air and water, and the solutions reduce to those of Lewis and Belcher [2004. Time-dependent, coupled, Ekman boundary layer solutions incorporating Stokes drift. Dyn. Atmos. Oceans. 37, 313-351] when only the effects of Stokes drift are included. As illustrative examples, for a fully developed wind-generated sea with different wind speeds, wave-modified current profiles are calculated and compared with the classical Ekman theory and Lewis and Belcher's [2004. Time-dependent, coupled, Ekman boundary layer solutions incorporating Stokes drift. Dyn. Atmos. Oceans 37, 313-351] modification by using the Donelan and Pierson [1987. Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry. J. Geophys. Res. 92, 4971-5029] wavenumber spectrum, the WAM wave model formulation for wind input energy to waves, and wave energy dissipation converted to currents. Illustrative examples for a fully developed sea and the comparisons between observations and the theoretical predictions demonstrate that the effects of the random surface waves on the classical Ekman current are important, as they change qualitatively the nature of the Ekman layer. But the effects of the wind input and wave dissipation on surface current are small, relative to the impact of the Stokes drift. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Interfacial waves propagating along the interface between a three-dimensional two-fluid system with a rigid upper boundary and an uneven bottom are considered. There is a light fluid layer overlying a heavier one in the system, and a small density difference exists between the two layers. A set of higher-order Boussinesq-type equations in terms of the depth-averaged velocities accounting for stronger nonlinearity are derived. When the small parameter measuring frequency dispersion keeping up to lower-order and full nonlinearity are considered, the equations include the Choi and Camassa's results (1999). The enhanced equations in terms of the depth-averaged velocities are obtained by applying the enhancement technique introduced by Madsen et al. (1991) and Schaffer and Madsen (1995a). It is noted that the equations derived from the present study include, as special cases, those obtained by Madsen and Schaffer (1998). By comparison with the dispersion relation of the linear Stokes waves, we found that the dispersion relation is more improved than Choi and Camassa's (1999) results, and the applicable scope of water depth is deeper.
Resumo:
Nonlinear interaction between surface waves and a submerged horizontal plate is investigated in the absorbed numerical wave flume developed based on the volume of fluid (VOF) method. The governing equations of the numerical model are the continuity equation and the Reynolds-Averaged Navier-Stokes (RANS) equations with the k-epsilon turbulence equations. Incident waves are generated by an absorbing wave-maker that eliminates the waves reflected from structures. Results are obtained for a range of parameters, with consideration of the condition under which the reflection coefficient becomes maximal and the transmission coefficient minimal. Wave breaking over the plate, vortex shedding downwave, and pulsating flow below the plate are observed. Time-averaged hydrodynamic force reveals a negative drift force. All these characteristics provide a reference for construction of submerged plate breakwaters.
Resumo:
Based on the Navier-Stokes equation, an equation describing the Langmuir circulation is derived by a perturbation method when the influences of Coriolis force and buoyancy force are both considered. The approach used in the analysis is similar to the works carried out by Craik and Leibovich [J. Fluid Mech. 73 (1976) 401], Leibovich [J. Fluid Mech. 79 (1977) 715] and Huang [J. Fluid Mech. 91 (1979) 191]. Potential applications of the equation proposed are discussed in the area of Antarctic circumpolar current.
Resumo:
A statistical model of random wave is developed using Stokes wave theory of water wave dynamics. A new nonlinear probability distribution function of wave height is presented. The results indicate that wave steepness not only could be a parameter of the distribution function of wave height but also could reflect the degree of wave height distribution deviation from the Rayleigh distribution. The new wave height distribution overcomes the problem of Rayleigh distribution that the prediction of big wave is overestimated and the general wave is underestimated. The prediction of small probability wave height value of new distribution is also smaller than that of Rayleigh distribution. Wave height data taken from East China Normal University are used to verify the new distribution. The results indicate that the new distribution fits the measurements much better than the Rayleigh distribution.
Resumo:
色散和非线性是两层流体界面内波的两个重要特性,对其的研究,不仅有助于揭示两层流体界面内波的生成、演化、衰减、消亡机理,而且对水底及沿岸工程具有现实的指导意义。 通过引入描述非线性和色散的两个小参数,考虑了无旋、无粘、不可压两层流体的界面内波。首先,分别用未扰动面速度、任意水深处速度和平均速度推导出两层流体界面波的高阶Boussinesq方程,所得到的方程不仅包括了前人关于两层流体界面波的结果,而且可以退化到表面波的许多情况。随后,分析了用任意水深处速度表示的方程的色散性、非线性特征和浅化因子。结果表明,通过选择适当的和位置有关的无量纲参数,尽管刻画色散性小参数量阶保留到低阶,所获得的结果足可与原始方程的色散性、非线性特征和浅化系数保持很好的吻合。接着,对用平均速度表示的方程和用任意水深处速度表示的方程进行了改进,改进后方程的色散性有了很大的提高。最后建立了包括均匀流、均匀剪切流和泊肃叶流等背景流下的界面波运动的高阶Boussinesq方程,求得了均匀流和剪切流情况下方程的二阶Stokes解,揭示了波流之间和界面波之间的非线性相互作用特性。
Resumo:
Langmuir环流是发生在上层海洋中纵向的螺旋状涡旋运动,其轴向与风向基本一致。它是一常见的重要海洋现象,与海洋研究的许多重要问题,如海-气交换、海洋混合、海洋环境、海洋遥感、海洋生态和海洋灾害等有着十分密切的关系。 本文在同时考虑科氏力与浮力作用下,从Navier-Stokes方程出发,应用摄动理论,导出一个包含科氏力与浮力影响的Langmuir环流控制方程组。所采用的方法类似于Craik and Leibovich(1976)、Leibovich(1977)及Huang(1979)等人研究Langmuir环流时所采用的研究方法。此外,本文还讨论了所导出的方程组在南极绕极流区域的潜在应用。
Resumo:
Molecular dynamics simulations were used to study the pressure dependence of the structure and the dynamic properties of forsterite melt (Mg_2SiO_4), diopside melt (CaMgSi_2O_6), anorthite melt (CaAl_2Si_2O_8), jadite melt (NaAlSi_2O_6) and albite melt (NaAlSi3O8) from 0 GPa to 25 GPa at about 2000 K and the following conclusions have been reached. Firstly, the ratio of NBO to T (NBO and T denote the content of non-bridging oxygen and the total content of Si~(4+) and Al~(3+) respectively) is closely related to the pressure and the composition of the melts. It decreases monotonously in forsterite, diopside and anorthite melts while increases at the initial stage and then decreases in jadite and albite melts with increasing pressure. At a fixed pressure, the shear viscosity of the melts decreases with increasing NBO/T and the variation rate is almost 150 times higher in fully polymerized melts than that in de-polymerized melts in comparison with anorthite melts. Secondly, it is generally accepted that the formation of the Si and A1 will promote the diffusion of the network-forming ions. The hypothesis is frequently employed to explain the emergence of the maximum self-diffusion coefficient of the network-forming ions in fully polymerized melts. However, I detected that the pressure corresponding to the peak of the self-diffusion coefficient of the network-forming ions is lower than that corresponding to the maximum content of Si and A1, and that there exists an approximately linear relationship between the self-diffusion coefficient of the ions and the breaking frequency of the bonds under a given pressure, which is different from the present understanding about the mechanism of self-diffusion. Thirdly, the relationship between the self-diffusion coefficient of Si~(4+), Al~(3+) and O~(2-) and the shear viscosity of the melts evolves from the Stokes-Einstein equation and Sutherland-Einstein equation to the Eyring equation with increasing pressure. And the key to obtain self-diffusion coefficient from shear viscosity under difference pressures is to determine A. in the Eyring equation. For Si~(4+) and O~(2-), this could be done using the linear relationship between A, and NBO% in anorthite melts. However, this method is inapplicable in other kinds of melts.