246 resultados para SPIN-TRAP
Resumo:
A resurgence of interest in the human plasma proteome has occurred in recent years because it holds great promise of revolution in disease diagnosis and therapeutic monitoring. As one of the most powerful separation techniques, multidimensional liquid chromatography has attracted extensive attention, but most published works have focused on the fractionation of tryptic peptides. In this study, proteins from human plasma were prefractionated by online sequential strong cation exchange chromatography and reversed-phase chromatography. The resulting 30 samples were individually digested by trypsin, and analyzed by capillary reversed-phase liquid chromatography coupled with linear ion trap mass spectrometry. After meeting stringent criteria, a total of 1292 distinct proteins were successfully identified in our work, among which, some proteins known to be present in serum in < 10 ng/mL were detected. Compared with other works in published literatures, this analysis offered a more full-scale list of the plasma proteome. Considering our strategy allows high throughput of protein identification in serum, the prefractionation of proteins before MS analysis is a simple and effective method to facilitate human plasma proteome research.
Resumo:
Direct-injection electrospray ionization mass spectrometry in combination with information-dependent data acquisition (IDA), using a triple-quadrupole/linear ion trap combination, allows high-throughput qualitative analysis of complex phospholipid species from child whole blood. In the IDA experiments, scans to detect specific head groups (precursor ion or neutral loss scans) were used as survey scans to detect phospholipid classes. An enhanced resolution scan was then used to confirm the mass assignments, and the enhanced product ion scan was implemented as a dependent scan to determine the composition of each phospholipid class. These survey and dependent scans were performed sequentially and repeated for the entire duration of analysis, thus providing the maximum information from a single injection. In this way, 50 different phospholipids belonging to the phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, phosphatidylcholine and sphingomyelin classes were identified in child whole blood. Copyright (C) 2005 John Wiley & Sons, Ltd.