347 resultados para SC(III)
Resumo:
Three new cyclometalated iridium(III) complexes based on ligands of diphenylquinoline with fluorinated substituents were prepared, and characterized by elemental analysis (EA), H-1 NMR, and mass spectroscopy (MS). The photophysical and electrophosphorescent properties of the complexes were briefly discussed.
Resumo:
The extraction and stripping of ytterbium (III) from sulfuric acid medium using Cyanex 923 in heptane solution was investigated. The effects of extractant concentration, pH and sulfate ion as well as stripping agents, acidity and temperature on the extraction and stripping were studied. The equilibrium constants and thermodynamic parameters, such as Delta H (10.76 kJ(.)mol(-1)), Delta G (-79.26 kJ(.)mol(-1)) and Delta S (292.41 J(.)K(-1.)mol(-1)), were calculated. The extraction mechanism and the complex species extracted were determined by slope analysis and FrIR spectra. Furthermore, it was found that the extraction of Yb (III) from sulfuric acid medium by Cyanex 923 increased with pH, concentration of SO42-, HSO4-, and extractant concentration, and approximately a quantitative extraction of Yb (III) was achieved at an equilibrium pH near 3.0, and the extracted complex was YbSO4(HSO4)(.)2Cyanex923((o)).
Resumo:
The speciation and distribution of Zn(II) and the effect of Gd(III) on Zn(II) speciation in human blood plasma were studied by computer simulation. The results show that, in normal blood plasma, the most predominant species of Zn(II) are [Zn(HSA)] (58.2%), [Zn(IgG)](20.1%), [Zn(Tf)] (10.4%), ternary complexes of [Zn(Cit)(Cys)] (6.6%) and of [Zn(Cys)(His)H] (1.6%), and the binary complex of [Zn(CYS)(2)H] (1.2%). When zinc is deficient, the distribution of Zn(II) species is similar to that in normal blood plasma. Then, the distribution changes with increasing zinc(II) total concentration. Overloading Zn(II) is initially mainly bound to human serum albumin (HSA). As the available amount of HSA is exceeded, phosphate metal and carbonate metal species are established. Gd(III) entering human blood plasma predominantly competes for phosphate and carbonate to form precipitate species. However, Zn(II) complexes with phosphate and carbonate are negligible in normal blood plasma, so Gd(III) only have a little effect on zinc(II) species in human blood plasma at a concentration above 1.0x10(-4) M.
Resumo:
Ultrathin multilayer films have been prepared by means of alternate adsorption of iron(Ill)-substituted heteropolytungstate anions and a cationic redox polymer on the 4-aminobenzoic acid modified glassy carbon electrode surface based on electrostatic layer-by-layer assembly. Cyclic voltammetry, electrochemical impedance spectroscopy and UV-Vis absorption spectrometry have been used to easily monitor the uniformity of thus-formed multilayer films. Especially, the electrochemical impedance spectroscopy is successfully used to monitor the multilayer deposition processes and is a very useful technique in the characterization of multilayer films because it provides valuable information about the interfacial impedance features. All these results reveal regular film growth with each layer adsorption. The resulting multilayer films can effectively catalyze the reduction of H2O2,NO2- and BrO3-.
Resumo:
A multiphase model of metal ion speciation in human interstitial fluid was constructed and the effect of Pr(III) on Ca(II) speciation was studied. Results show that free Ca2+, [Ca(HCO3)], and [Ca(Lac)] are the main species of Ca(II). Because of the competition of Pr(III) for ligands with Ca(II), the percentages of free Ca2+, [Ca(Lac)], and [Ca(His)(Thr)H-3] increase gradually and the percentages of CaHPO4(aq) and [Ca(Cit)(His)H-2] decrease gradually with the increase in the total concentration of Pr(III). However, the percentages of [Ca(HCO3)] and CaCO3(aq) first increase and then begin to decrease when the total concentration of Pr(III) exceeds 6.070 x 10(-4) M.
Resumo:
The title complex, [Gd-2 (C3H7NO2)(4)(H2O)(8)](ClO4)(6), contains centrosymmetric dimeric [Gd-2 (Ala)(4) (H2O)(8)](6+) cations (Ala is alpha-alanine) and perchlorate anions. The four alanine molecules act as bridging ligands linking two Gd3+ ions through their carboxylate O atoms. Each Gd3+ ion is also coordinated by four water molecules, which complete an eightfold coordination in a square-antiprism fashion. The perchlorate anions and the methyl groups of the alanine ligands are disordered.
Resumo:
The speciation and distribution of Gd(III) in human interstitial fluid was studied by computer simulation. Meantime artificial neural network was applied to the estimation of log beta values of complexes. The results show that the precipitate species, GdPO4 and Gd-2(CO3)(3), are the predominant species. Among soluble species, the free Gd(III), [Gd(HSA)], [Gd(Ox)] and then the ternary complexes of Gd(III) with citrate arc main species and [Gd-3(OH)(4)] becomes the predominant species at the Gd(III) total concentration or 2.2x10(-2)mol/L.
Resumo:
A new tetrakis praseodymium(tu) complex Pr(TFNB)(3)Phen has been synthesized, in which TFNB is 4,4,4-trifluoro-1-(2-naphthyl)-1,3-butanedione and Phen is 1,10-phenanthroline. Its crystal structure and luminescent spectra were successfully determined and investigated. The typical antenna effect existing in the luminescence of Pr(TFNB)(3)Phen was revealed by the study of the UV-Vis absorption spectra of ligands and the excitation spectrum of Pr(TFNB)(3)Phen.
Resumo:
The synergistic effect of 1-phenyl-3-methyl-4-benzoyl-pyrazalone-5 (HPMBP) and triisobutylphosphine sulphide (TIBPS, B) is investigated in the extraction of lanthanum(III) from chloride solution. Lanthanum(III) is extracted by the mixture as LaCl2.PMBP.B-0.5 instead of La(PMBP)(3).(HPMBP) which is extracted by HPMBP alone. The equilibrium constants and thermodynamic functions such as DeltaG, DeltaH and DeltaS are determined. The extraction of other rare earth ions by mixtures of HPMBP and TIBPS is also studied and the possibility of separating rare earth ions is discussed.
Resumo:
The interaction of DNA with Tris(1,10-phenanthroline) cobalt(III) was studied by means of atomic force microscopy. Changes in the morphologies of DNA complex in the presence of ethanol may well indicate the crucial role of electrostatic force in causing DNA condensation. With the increase of the concentration of ethanol, electrostatic interaction is enhanced corresponding to a lower dielectric constant. Counterions condense along the sugar phosphate backbone of DNA when e is lowered and the phosphate charge density can thus be neutralized to the level of DNA condensation. Electroanalytical measurement of DNA condensed with Co(phen)(3)(3+) in ethanol solution indicated that intercalating reaction remains existing. According to both the microscopic and spectroscopic results, it can be found that no secondary structure transition occurs upon DNA condensing. B-A conformation transition takes place at more than 60% ethanol solution.
Resumo:
Such physicochemical properties of sec-nonylphenoxy acetic acid (CA-100) as the solubility in water, acid dissociation constant in water, dimerization constant in heptane, and distribution constant in organic solvent-water were measured by two-phase titration. The extraction behaviors of scandium (III), yttrium (III), lanthanides (III), and divalent metal ions from hydrochloric acid solutions with CA-100 in heptane have been investigated, and the possibilities of separating scandium (yttrium) from lanthanides and divalent metal ions have been carefully discussed. The stoichiometries of the extracted metal complexes were investigated by the slope-analysis technique. The effect of the nature of diluent on the extraction of yttrium (III) with CA100 has been studied and correlated with the dielectric constant.
Resumo:
To simplify the abstraction of descriptors, for the correlation analysis of the stability constants of gadolinium(III) complexes and their ligand structures, aiming at gadolinium(III) complexes, we only considered the ligands and ignored the common parts of the structures, i.e., the metal ions. Quantum-chemical descriptors and topological indices were calculated to describe the structures of the ligands. Multiple regression analysis and neural networks were applied to construct the models between the ligands and the stability constants of gadolinium(III) complexes and satisfactory results were obtained.
Resumo:
A new kind of luminescent organic-inorganic hybrid material (denoted Hybrid I) consisting of europium 1,10-phenanthroline complexes covalently attached to a silica-based network was prepared by a sol-gel process. 1,10-Phenanthroline grafted to 3-(triethoxysilyl)propyl isocyanate was used as one of the precursors for the preparation of an organic-inorganic hybrid materials. For comparison purposes, the hybrid material (denoted Hybrid II) in which phenanthroline was not grafted onto the silica backbone of the frameworks was also prepared. Elemental analysis; NMR, FT-IR, UV/vis absorption, and luminescence spectroscopies, and luminescence decay analysis were used to characterize the obtained hybrid materials. It is shown that the homogeneity of Hybrid I is superior to that of Hybrid II, and a higher concentration europium can be incorporated into Hybrid I than Hybrid II. Excitation at the ligand absorption wavelength (283 nm) resulted in the strong emission of the Eu3+ D-5(0)-F-7(J) (J = 0-4) transition lines as a result of the efficient energy transfer from the ligands to the EU3+ in Hybrid I. The number of water molecules coordinated to the europium ion was estimated, and the structure of the as-synthesized Hybrid I was predicted on the basis of the experimental results.