267 resultados para Rice trade
Resumo:
IEECAS SKLLQG
Resumo:
In order to investigate the biological effects of heavy ion radiation at low closes and the different radiosensitivities of growing and non-growing plants. rice at different lift stages (dry seed, wet seed and seedling) were exposed to carbon ions at closes of 0 02, 0.2, 2 and 20 Gy. Radiobiological effects on survival, root growth and mitotic activity, as well as the induction of chromosome aberrations in root meristem. were observed The results show that radiation exposure induces a stimulatory response at lower close and an inhibitory response at higher dose on the mitotic activity of wet seeds and seedlings Cytogenetic damages are induced in both seeds and seedlings by carbon ion radiation at doses as low as 0.02 Gy Compared with seedlings. seeds are more resistant to the lethal damage and the growth rate damage by high doses of carbon ions, but are more sensitive to cytogenetic damage by low closes of irradiation Different types of radiation induced chromosome aberrations are observed between seeds and seedlings. Based on these results, the relationships between low close heavy ion-induced biological effects and the biological materials are discussed.
Resumo:
The synthesis, structures, photophysics, electrochemistry and electrophosphorescent properties of new red phosphorescent cyclometalated iridium(III) isoquinoline complexes, bearing 9-arylcarbazolyl chromophores, are reported. The functional properties of these red phosphors correlate well with the results of density functional theory calculations
Resumo:
The synthesis, structures, photophysics, electrochemistry and electrophosphorescent properties of new red phosphorescent cyclometalated iridium(III) isoquinoline complexes, bearing 9-arylcarbazolyl chromophores, are reported. The functional properties of these red phosphors correlate well with the results of density functional theory calculations. The highest occupied molecular orbital levels of these complexes are raised by the integration of a carbazole unit to the iridium isoquinoline core so that the hole-transporting ability is improved in the resulting complexes relative to those with I-phenylisoquinoline ligands. All of the complexes are highly thermally stable and emit an intense red light at room temperature with relatively short lifetimes that are beneficial for highly efficient organic light-emitting diodes (OLEDs).