260 resultados para RARE EARTHS COMPLEXES
Resumo:
A series of novel, colorless, and transparent sot-gel derived hybrid materials Ln-DBM-Si covalently grafted with Ln(DBM-OH)(3)center dot 2H(2)O (where DBM-OH = o-hydroxydibenzoylmethane, Ln = Nd, Er, Yb, and Sin) were prepared through the primary beta-diketone ligand DBM-OH. The structures and optical properties of Ln-DBM-Si were studied in detail. The investigation results revealed that the lanthanide complexes were successfully in situ grafted into the corresponding hybrids Ln-DBM-Si. Upon excitation at the maximum absorption of ligands, the resultant materials displayed excellent near-infrared luminescence.
Resumo:
Deprotonation of (ArNHPPh2NAr2)-N-1 (H[NPN](n), n = 1 - 10) by Ln(CH2SiMe3)(3)(THF)(2) (Ln = Lu, Y, Sc, Er) generated a series of rare-earth metal bis(alkyl) complexes [NPN](n)Ln(CH2SiMe3)(2)(THF)(2) (1-10), which under activation with [Ph3C][B(C6F5)(4)] and AliBu(3) were tested for isoprene polymerization. The correlation between catalytic performances and molecular structures of the complexes has been investigated. Complexes 1-5 and 8, where Ar-1 is nonsubstituted or ortho-alkyl-substituted phenyl, adopt trigonal-bipyramidal geometry. The Ar-1 and Ar-2 rings are perpendicular in 1-4 and 8 but parallel in 5. When Ar-1 is pyridyl, the resultant lutetium and yttrium complexes 9a and 9b adopt tetragonal geometry with the ligand coordinating to the metal ions in a N,N,N-tridentate mode, whereas in the scandium analogue 9c, the ligand coordinates to the Sc3+ ion in a N,N-bidentate mode. These structural characteristics endow the complexes with versatile catalytic performances, With increase of the steric bulkiness of the ortho-substituents Ar-1 and Ar-2, the 3,4-selectivity increased stepwise from 81.6% for lutetium complex 1 to 96.8% for lutetium complex 6 and to 97.8% for lutetium complex 7a. However, further increase of the steric bulk of the ligand led to a slight drop of 3,4-selectivity for the attached complex 5 (95.1%).
Resumo:
Five new complexes based on rare-earth-radical [Ln(hfac)(3)(NIT-5-Br-3py)](2) (Ln=Pr (1), Sm (2), Eu (3), Tb (4), Tm (5); hfac = hexafluoroacetylacetonate; NIT-5-Br-3py = 2-(4,4,5,5-tetramethyl-3-oxylimidazoline-1-oxide)-5-bromo-3-pyridine) have been synthesized and characterized by X-ray crystal diffraction. The single-crystal structures show that these complexes have similar structures, in which a NIT-5-Br-3py molecule acts as a bridging ligand linking two Ln(III) ions through the oxygen atom of the N-O group and nitrogen atom from the pyridine ring to form a four-spin system. Both static and dynamic magnetic properties were measured for complex 4, which exhibits single-molecule magnetism behavior.
Resumo:
A mononuclear tri-spin single-molecule magnet based on the rare earth radical [Tb(hfac)(3)(NITPhOEt)(2)] (NITPhOEt = 4'-ethoxy-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) has been synthesized, structurally characterized and the alternating current signals show a slow relaxation of magnetization and frequency-dependent signals.
Resumo:
Treatment of indenyl-modified imidazolium bromide [C9H7CH2CH2(NCHCHN(C6H2Me3-2,4,6)CH)Br] ((IndH-NHC-H)Br) with rare earth metal tetra(alkyl) lithium (Ln(CH2SiMe3)(4)Li(THF)(4)) or with (trimethylsilylmethyl)lithium (LiCH2SiMe3) and rare earth metal tris(alkyl)s (Ln(CH2SiMe3)(3)(THF)(2)) sequentially afforded the first NHC-stabilized monomeric rare earth metal bis(alkyl) complexes (Ind-NHC)Ln(CH2SiMe3)(2) (1, Ln = Y; 2, Ln = Lu; 3, Ln = Sc) via double-deprotonation reactions. Complexes 1-3 are THF-free isostructural monomers. The monoanionic Ind-NHC species bond to the central metal ion in a eta(5):kappa(1) constrained geometry configuration (CGC) mode, which combine with the two cis-located alkyl moieties to form a tetrahedron ligand core, leading to the chirality of the complexes. Under the presence of activators AlEt3 and [Ph3C][B(C6F5)(4)], complex 2 showed catalytic activity toward the polymerization of isoprene to afford 3,4-regulated polyisoprene (91%).
Resumo:
The N,N- bidentate ligands 2- {( N- 2,6- R) iminomethyl)} pyrrole ( HL1, R) dimethylphenyl; HL2, R) diisopropylphenyl) have been prepared. HL1 reacted readily with 1 equiv of lanthanide tris( alkyl)s, Ln(CH2SiMe3)(3)(THF)(2), affording lanthanide bis(alkyl) complexes L(1)Ln(CH2SiMe3)(2)(THF)(n) (1a, Ln= Lu, n = 2; 1b, Ln = Sc, n = 1) via alkane elimination. Reaction of the bulky ligand HL2 with 1 equiv of Ln(CH2SiMe3)(3)( THF)(2) gave the bis(pyrrolylaldiminato) lanthanide mono(alkyl) complexes L(2)(2)Ln- (CH2SiMe3)(THF) (2a, Ln) Lu; 2b, Ln = Sc), selectively. The N,N- bidentate ligand HL3, 2- dimethylaminomethylpyrrole, reacted with Ln( CH2SiMe3) 3( THF) 2, generating bimetallic bis( alkyl) complexes of central symmetry ( 3a, Ln = Y; 3b, Ln = Lu; 3c, Ln = Sc). Treatment of the N,N,N,N- tetradentate ligand H2L4, 2,2'-bis(2,2-dimethylpropyldiimino) methylpyrrole, with equimolar Lu(CH2SiMe3)(3)(THF)(2) afforded a C-2- symmetric binuclear complex ( 4). Complexes 3a, 3b, 3c, and 4 represent rare examples of THF- free binuclear lanthanide bis( alkyl) complexes supported by non- cyclopentadienyl ligands. All complexes have been tested as initiators for the polymerization of isoprene in the presence of AlEt3 and [ Ph3C][B(C6F5)(4)]. Complexes 1a, 1b, and 3a show activity, and 1b is the most active initiator, whereas 2a, 2b, 3b, 3c, and 4 are inert.
Resumo:
Several ultrathin luminescent Langmuir-Blodgett (LB) films have been prepared by using the subphase containing the rare earth ions (Eu3+, Tb3-). The effect of the rare earth ions on the monolayer of 2-n-heptadecanoylbenzoic acid (HBA) was investigated. IR and UV spectra showed the rare earth ions were bound to the carboxylic acid head groups and the coordination took place between the polar head group and the rare earth ions. The layer structure of the LB films was demonstrated by low-angle X-ray diffraction. UV absorbance intensity increases linearly with the number of LB films layers, which indicate that the LB films are homogeneously deposited. The LB films can give off strong fluorescence. and the signal can be detected from a single layer. The characteristic luminescence behaviors of LB films have been discussed compared with those of the complexes.
Resumo:
earth (Eu3+, Dy3+)-heteropolytungstate thin films were fabricated by self-assembly method successfully. The thin films give off strong fluorescence, which can be observed by eyes upon UV irradiation. The characteristic emission behaviors of the rare earth ions in self-assembled thin film were investigated compared with those of the corresponding solids. It is noticed that the intensity ratio between D-5(0) --> F-7(2) and D-5(0) --> F-7(1) of Eu3+ and the intensity ratio between F-4(9/2) --> H-6(13/2) and F-4(9/2) --> H-6(15/2) of Dy3+ in the self-assembled films are different from those of the corresponding solids. Furthermore, the self-assembled films present shorter fluorescence lifetimes than the corresponding solids. The reasons for these results have been discussed.
Resumo:
Hybrid materials, containing in-situ synthesized lanthanide complexes with intense green light, have been prepared via sol-gel process. The luminescence properties and the decay times of as-synthesized samples were investigated. The excitation spectrum of the samples indicates the formation of complexes between terbium (III) and P-Sulfosalicylic acid. The hybrid materials that contain in-situ synthesized terbium complexes exhibit the characteristic emission bands of the rare earth ions. In addition, the effect of concentration of terbium on the luminescence properties as well as the thermal stability were also studied.
Resumo:
The rare earth (Eu3+, Dy3+)-polyoxometalate thin films were fabricated on quartz plate by the sol-gel method. The thin films were demonstrated by the luminescence spectra. The thin films exhibit the characteristic emission bands of the rare-earth ions. It is noticed that the yellow to blue intensity ratio (Y:B) of Dy3+ and the red to orange ratio (R:O) of Eu3+ in the films are different from that of the corresponding solids. Furthermore, the thin films present shorter fluorescence lifetime than the pure complexes. The reasons that were responsible for these results were also discussed.
Resumo:
Luminescent thin films of heteropolytungstate complexes containing lanthanide (europium or samarium) were successfully fabricated by the Langmuir-Blodgett (LB) technique. The pressure-area isotherm of the monolayer of dimethyldioctadecylammonium. bromide (DODA) is modified rather markedly when the subphase contains the complex of Na9EuW10O36 or Na9SmW10O36. The above results indicate that the monolayer of DODA has a strong interaction with the polyanions of EuW10O369-. (or SmW10O369-). X-ray photoelectron spectra and fluorescent spectra verify that europium and tungsten atoms are 36 36 incorporated into the LB films. Ultraviolet (UV), fluorescent spectra and low-angle X-ray diffraction experiments demonstrate that these LB films have a well-defined lamellar structure. The LB film containing EuW10O369- can give off strong fluorescence 16 on UV irradiation. The characteristic emission behaviors of europium ions in LB films and in the powder of Na9EuW10O369- are discussed. It is found that the intensity ratio of the D-5(0)-F-7(2) transition to the D-5(0)-->F-7(1) transition in LB film is quite different from that in the powder of Na9EuW10O36. The difference of the ratio indicates that the site symmetry of europiurn is distorted in LB film, which is probably due to the strong electrostatic interactions between DODA and polyanions.
Resumo:
The kinetics of RE (La, Gd, Er, Yb and Y) extraction with sec-octylphenoxy acetic acid was investigated using a constant interfacial area cell with laminar flow at 303 K. The natures of the extracted complexes have some effect on the extraction rate which is controlled by the reaction rate of M(III) and extractant molecules at two-phase interface for Er(III), Yb(III) and Y(III), by a mixed chemical reaction-diffusion for Gd(III) and a diffusion for La( III). The extractant molecules tend to adsorb at the interface. So an interfacial extraction reaction model was derived.
Resumo:
Two rare earth heteropolymetalates K9GdW10O36 and K-11[Gd(PW11O39)(2)] have been synthesized and characterized by IR and elemental analysis. Their stability has been studied by TG - DTA. The TG - DTA analysis show that both complexes are of good thermal stability. Their relaxivity in D2O is 6.89 and 5.27 mmol(-1).s(-1) respectively. Interaction with BSA has also been investigated. The results indicate that the two rare earth heteropolymetalate may be potential contrast agent for MRI.
Resumo:
In this paper, the effects of rare earth ions (La3+, Eu3+, Dy3+, Yb3+) and their complexes with calmodulin on the activity of lactate dehydrogenase (LDH) were investigated. The results reveal that whether binding with calmodulin or not, rare earth ions show a minor activation effects on LDH when their concentrations are less than 3 mu mol (.) L-1, but indicate some strong inhibitory effects on LDH activity when the concentrations are above 5 mu mol (.) L-1. Calmodulin, which is a calcium-dependent regulator, can stimulate LDH activity and release the inhibitory effects of rare earth ion. Diethylenetriamine pentaacetic acid(DTPA) and its derivatives bisdimethylamide-diethylenetriamine pentaacetic acid (DTPA-BDMA), bisisonicotinyl-diethylenetriamine pentaacetic acid (DTPA-BIN), which are often used as ligands to metal ions, inhibit LDH activity when their concentrations are above 5 mu mol (.) L-1. Calmodulin can also release their inhibitory effects at the same time.
Resumo:
A novel macrocyclic compound-water soluble functional calixresorcin[4]arenes-tetra para sulfo-phenylmethyl-calixresorcin[4]are was synthesized for the first time. The photophysical properties of terbium and europium ions encapsulated in the macrocyclic ligand were studied in detail. The triplet state energy of the calixresorcin[4]arene was determined to be 24400 cm(-1) by the low temperature phosphorescence spectrum and it was found that it can sensitize both terbium ion and europium ion. The possible energy transfer process between the functional calixresorcin[4]arene and the encapsulated Tb3+ and Eu3+ was discussed. The luminescence quantum efficiency of Tb3+- calixresorcin[4]arene was calculated.