298 resultados para Quartz crystals
Resumo:
Metallocene-catalyzed short chain branched polyethylene single crystals, formed from the melt at a higher crystallization temperature of 114 degreesC, were obtained. Highly elongated lamellae were formed, which are different from truncated lozenge or lenticular shaped single crystals formed at a lower crystallization temperature. It was found that there existed a definite line in the lamellae along the longitudinal growth direction and two regions were separated by the definite line. The lateral habits of both the regions were asymmetrical about the b-axis due to the chain tilting, which was the same as that at a lower crystallization temperature. Generally, the highly elongated lamellae were not straight, but curved towards the opposite direction with chain tilting direction due to a series of edge dislocation within a lamella. The inner side of a lamella was serrated and the outer side was smooth due to the lamellar curvature. The thickness of both regions of a lamella was different, the broader region was thicker than the narrower region, which was different from the uniform thickness of the lamellae formed at a lower crystallization temperature. The different thicknesses within a lamella were considered as the result of the initial thickness difference and the impact of isothermal thickening. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
A new solvent, dimethylformamide (DMF), and the traditional solvent, 1,4-butanediol, were used to prepare single crystals of nylon-10,10 from a dilute solution. The lamellae grown from DMF inhabited a more perfect structure and regular shape than those crystals crystallized from traditional solvents such as 1,4-butanediol and glycerin. These thin and perfect lamellar crystals demonstrated patterns of variation in spacing different from those of melt-crystallized spherulites on heating. Specifically, the two main spacings slightly separated rather than continuously approaching each other when the temperature was greater than 180 degreesC. This is a novel phenomenon observed in nylons. Nevertheless, the usual pattern of change in spacing was observed during the cooling process. These lamellar crystals showed more compact spacing of the (002) and (010/100) planes than spherulites at room temperature. (C) 2001 John Wiley & Sons, Inc.
Resumo:
Two new concepts for molecular solids, 'local similarity' and 'boundary-preserving isometry', are defined mathematically and a theorem which relates these concepts is formulated. 'Locally similar' solids possess an identical short-range structure and a 'boundary-preserving isometry' is a new mathematical operation on a finite region of a solid that transforms mathematically a given solid to a locally similar one. It is shown further that the existence of such a 'boundary-preserving isometry' in a given solid has infinitely many 'locally similar' solids as a consequence. Chemical implications, referring to the similarity of X-ray powder patterns and patent registration, are discussed as well. These theoretical concepts, which are first introduced in a schematic manner, are proved to exist in nature by the elucidation of the crystal structure of some diketopyrrolopyrrole (DPP) derivatives with surprisingly similar powder patterns. Although the available powder patterns were not indexable, the underlying crystals could be elucidated by using the new technique of ab initio prediction of possible polymorphs and a subsequent Rietveld refinement. Further ab initio packing calculations on other molecules reveal that 'local crystal similarity' is not restricted to DPP derivatives and should also be exhibited by other molecules such as quinacridones. The 'boundary-preserving isometry' is presented as a predictive tool for crystal engineering purposes and attempts to detect it in crystals of the Cambridge Structural Database (CSD) are reported.
Resumo:
In natural and synthetic materials having non-racemic chiral centers, chirality and structural ordering each play a distinct role in the formation of ordered states. Configurational chirality can be extended to morphological chirality when the phase, structures possess low liquid crystalline order. In the crystalline states the crystallization process suppresses the chiral helical morphology due to strong ordering interactions, In this Letter, we report the first observation of helical single lamellar crystals of synthetic non-racemic chiral polymers. Experimental evidence shows that the molecular chains twist along both the long and short axes of the helical lamellar crystals, which is the first time a double-twist molecular orientation in a helical crystal has been observed.
Resumo:
Phase structures and transformation mechanisms of nonracemic chiral biological and synthetic polymers are fundamentally important topics in understanding their macroscopic responses in different environments. It has been known for many years that helical structures and morphologies can exist in low-ordered chiral liquid crystalline (LC) phases. However, when the chiral liquid crystals form highly ordered smectic liquid crystal phases, the helical morphology is suppressed due to the crystallization process. A double-twisted morphology has been observed in many liquid crystalline biopolymers such as dinoflaggellate chromosomes (in Prorocentrum micans) in an in vivo arrangement. Helical crystals grown from solution have been reported in the case of Bombyx mori silk fibroin crystals having the beta modification. This study describes a synthetic nonracemic chiral main-chain LC polyester that is able to thermotropically form helical single lamellar crystals. Flat single lamellar crystals can also be observed under the same crystallization condition. Moreover, flat and helical lamellae can coexist in one single lamellar crystal, within which one form can smoothly transform to the other. Both of these crystals possess the same structure, although translational symmetry is broken in the helical crystals. The polymer chain folding direction in both flat and helical lamellar crystals is determined to be identical, and it is always along the long axis of the lamellae. This finding provides an opportunity to study the chirality effect on phase structure, morphology, and transformation in condensed states of chiral materials. [S0163-1829(99)01042-5].
Resumo:
We report a semiempirical method for the evaluation of bond covalency in complex crystals. This method is the extension of the dielectric description theory delivered by Phillips, Van Vechten, Levine, and Tanaka (PVLT) which is mainly suitable for binary crystals. Our method offers the advantage of applicability to a broad class of complex materials. The simplicity of the approach allows a broader class of researchers to access the method easily and to calculate not only the bond covalency but also other useful. properties such as bulk modulus. For a series study, a useful trend can be illustrated and often the prediction of the properties of the-missing one(s) among the series can be possible. Finally, examples are given to show how the method is applied and the procedure is transferable to other complex crystals.
Resumo:
This work probes the role of hydrogen bonds (such as O-H ... O and N-H ... O) in some inorganic nonlinear optical (NLO) crystals, such as HIO3, NH4H2PO4 (ADP), K[B5O6(OH)(4)] . 2H(2)O (KB5) and K2La(NO3)(5) . 2H(2)O (KLN), from the chemical bond standpoint. Second order NLO behaviors of these four typical inorganic crystals have been quantitatively studied, results show hydrogen bonds play a very important role in NLO contributions to the total nonlinearity. Conclusions derived here concerning the effect of hydrogen bonds on optical nonlinearities of inorganic crystals have important implications with regard to the utilization of hydrogen bonds in the structural design of inorganic NLO crystals. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Second order nonlinear optical (NLO) properties of single crystals with complex structures are studied, from the chemical bond viewpoint. Contributions of each type of constituent chemical bond to the total linearity and nonlinearity are calculated from the actual crystal structure, using the chemical bond theory of complex crystals and the modified bond charge model. We have quantitatively proposed certain relationships between the crystal structure and its NLO properties. Several relations have been established from the calculation. Our method makes it possible for us to identify, predict and modify new NLO materials according to our needs. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Charge transfer and bond ionicity of some monovalent, divalent, and trivalent binary crystals of A(N)B(8-N) type have been investigated using the self-consistent method. The method divides the binary crystal systems into two subsystems which contain only one kind of element each in physical space. The charge transfer values are obtained by adjusting the charge in a self-consistent way. Based on the obtained charge transfer values, an empirical formula for bond ionicity has been proposed. It has been shown that the present results for bond ionicity are in good agreement with the previous theoretical study delivered by Levine and Pauling. The results also indicate that a large magnitude of charge transfer (or less excess charge in the bonding region) gives rise to high bond ionicity (or low bond covalency); this agrees well with the viewpoint that the excess charge in the bonding region is the origin of the formation of bond covalency. (C) 1998 American Institute of Physics. [S0021-9606(98)00837-X].
Resumo:
From the chemical bond viewpoint, the second-order nonlinear optical (NLO) tensor coefficients of some Re-2(MoO4)(3) (ReMO)-type tare earth molybdates, with Re = Pr, Nd, Sm, Eu, Gd, Tb and Dy, have been calculated by using the chemical bond theory of complex crystals and the modified bond charge model. All kinds of constituent chemical bonds are considered in the calculation. The major part of the NLO properties of these ReMO crystals is found from the ReO7 groups. The NLO coefficients of these ReMO crystals decrease with Re from Pr to Dy. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
By using the dielectric description theory of ionicity of solids, chemical bond properties of rare earth ions with various ligands are studied. Calculated results show that chemical bond properties of the same rare earth ion and the same ligand in different crystals depend on the crystal structures. In a series of compounds, chemical bond properties of crystals containing different rare earth ions are similar. The magnitude of covalency of chemical bonds of trivalent rare earth ions and various ligands has an order like F
Resumo:
Crystallization behavior of syndiotactic polypropylene(sPP) on the (100) lattice plane of high-density polyethylene(HDPE) crystals was studied by means of transmission electron microscopy and electron diffraction. The results indicate that sPP crystals can grow epitaxially on the (100) PE lattice plane with their chain directions +/-37 degrees apart from the chain direction of the HDPE substrate. The contact planes are (100) lattice planes for both polymers. This kind of epitaxy is explained in terms of parallel alignment of HDPE chains along the rows formed by the {CH3, CH2,CH3} groups in the (100) lattice plane of the sPP crystals. This implies that in the epitaxial crystallization of sPP with fiber oriented HDPE substrate, not only the (110) but also the (100) HDPE lattice planes can act as the oriented nucleation sites. Furthermore, according to the poor matching between HDPE chains in the (100) lattice plane and the {CH3, CH2, CH3} group rows in the (100) lattice plane of the sPP crystals, it is concluded that the geometric matching is not the only controlling factor for the occurrence of polymer epitaxy.
Resumo:
Single chain single crystals (SCSC) of gutta percha (GP) were prepared by a dilute-solution spraying method. Electron diffraction (ED) patterns revealed that the single chain single crystal was of a new crystalline modification, the delta form. The images of SCSC of GP obtained with a high resolution electron microscope (HREM) showed a two dimensional periodic structure. Most of the images consisted of lattice fringes derived from the (001) zone. This is the first time that the single chain single crystal images of GP have been observed at a molecular level. Micrographs were image processed using optical filtering methods to improve the signal-to-noise ratio, and were compared with computer-generated simulations of the images. From the viewpoint of the defects seen in high resolution images, the crystal formation and melting processes are discussed. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
The second-order nonlinear optical (NLO) tenser coefficients of LiXO3 (X = I; Nb or Ta) type complex crystals have been calculated using the chemical bond theory of complex crystals. Contributions of each type of bond to the total second-order NLO coefficient d(ij) and the linear susceptibility X are quantitatively determined. All tensor values thus calculated are in good agreement with experimental data. The Li-O bonds are found to be an important group in the contributions to the total NLO tenser coefficient, especially for those in LiNbO3 and LiTaO3. The importance of Li-O bonds depends on the environment of Li atom in these crystals.